login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199849
Number of -n..n arrays x(0..4) of 5 elements with zero sum and no element more than one greater than the previous.
1
26, 66, 132, 239, 399, 630, 944, 1367, 1913, 2612, 3482, 4557, 5857, 7424, 9278, 11465, 14011, 16966, 20356, 24239, 28643, 33630, 39232, 45515, 52513, 60300, 68910, 78421, 88873, 100348, 112886, 126577, 141463, 157638, 175148, 194091, 214515, 236526
OFFSET
1,1
COMMENTS
Row 5 of A199847.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) -a(n-3) -2*a(n-5) +2*a(n-6) +a(n-8) -2*a(n-10) +a(n-11) for n>12.
Empirical g.f.: x*(26 + 14*x + x^3 - 13*x^4 + 16*x^5 + 3*x^6 + 10*x^7 - 3*x^8 - 16*x^9 + 7*x^10 + x^11) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). - Colin Barker, May 16 2018
EXAMPLE
Some solutions for n=6:
..2....2....5....2....6....6....6....4....3....4....4....3....2....3....6....1
..3....3....6....1....2....4....6....3....1....1....3....2....0....4....2....2
..2....0...-3....1....3...-2...-1...-1....0...-2....0....2....1....4...-3....2
.-3...-2...-3....1...-6...-3...-5....0...-2...-1...-2...-3....0...-5...-2...-2
.-4...-3...-5...-5...-5...-5...-6...-6...-2...-2...-5...-4...-3...-6...-3...-3
CROSSREFS
Cf. A199847.
Sequence in context: A250605 A020155 A063304 * A116300 A299798 A039377
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2011
STATUS
approved