login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest number such that the sum of the n-th powers of its distinct prime divisors is divisible by n.
1

%I #14 Jun 12 2017 17:32:26

%S 2,2,3,2,5,70,7,2,3,33,11,1155,13,78,26,2,17,2156564410,19,6006,26,

%T 114,23,2156564410,5,33,3,1365,29,110,31,2,62,15,201,2156564410,37,30,

%U 14,961380175077106319535,41,1385670,43,2805,26,266,47,961380175077106319535

%N a(n) is the smallest number such that the sum of the n-th powers of its distinct prime divisors is divisible by n.

%C a(n) > 1 and a(n) = n if n prime. All terms are squarefree.

%e a(6) = 70 = 2*5*7; 2^6 + 5^6 + 7^6 = 133338 = 22223*6.

%e a(18)= 2*5*7*11*13*17*19*23*29 = 2156564410 because:

%e p^18 == 10, 9 (mod 18) for p = 2,3 respectively, and p^18 == 1 (mod 18) for p prime > 3. The minimum sum divisible by 18 is s = 2^18 + Sum_{k=3..10} prime(k)^18 whose residues sum to 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 18. Hence a(18) = 2156564410.

%p with(numtheory): T:=array(1..50):for n from 1 to 50 do:q:=0:for k from 2 to 7000 while(q=0)do:x:=factorset(k):s:=sum(x[j]^n ,j=1..nops(x)) :if irem(s,n)=0 then printf ( "%d %d \n",n,k):q:=1:else fi:od:if q=0 then for i from 1 to n do: T[i]:=irem(ithprime(i)^n,n):od:W:=convert(T,set):n1:=nops(W):n2:=W[n1]:n3:=W[n1-1]:

%p s:=0:p:=1:for a from 1 to n while(s<>n) do: if T[a]= 1 or T[a]=n2 or (T[a] = n3 and n2+n3<n) then s:=s+T[a]:p:=p*ithprime(a):else fi:if s= n then printf ( "%d %d \n",n,p):

%p else fi:od:else fi:od:

%Y Cf. A005063, A005064, A005065, A199167.

%K nonn

%O 1,1

%A _Michel Lagneau_, Nov 08 2011