login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199583
a(n) is the smallest number such that the sum of the n-th powers of its distinct prime divisors is divisible by n.
1
2, 2, 3, 2, 5, 70, 7, 2, 3, 33, 11, 1155, 13, 78, 26, 2, 17, 2156564410, 19, 6006, 26, 114, 23, 2156564410, 5, 33, 3, 1365, 29, 110, 31, 2, 62, 15, 201, 2156564410, 37, 30, 14, 961380175077106319535, 41, 1385670, 43, 2805, 26, 266, 47, 961380175077106319535
OFFSET
1,1
COMMENTS
a(n) > 1 and a(n) = n if n prime. All terms are squarefree.
EXAMPLE
a(6) = 70 = 2*5*7; 2^6 + 5^6 + 7^6 = 133338 = 22223*6.
a(18)= 2*5*7*11*13*17*19*23*29 = 2156564410 because:
p^18 == 10, 9 (mod 18) for p = 2,3 respectively, and p^18 == 1 (mod 18) for p prime > 3. The minimum sum divisible by 18 is s = 2^18 + Sum_{k=3..10} prime(k)^18 whose residues sum to 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 18. Hence a(18) = 2156564410.
MAPLE
with(numtheory): T:=array(1..50):for n from 1 to 50 do:q:=0:for k from 2 to 7000 while(q=0)do:x:=factorset(k):s:=sum(x[j]^n , j=1..nops(x)) :if irem(s, n)=0 then printf ( "%d %d \n", n, k):q:=1:else fi:od:if q=0 then for i from 1 to n do: T[i]:=irem(ithprime(i)^n, n):od:W:=convert(T, set):n1:=nops(W):n2:=W[n1]:n3:=W[n1-1]:
s:=0:p:=1:for a from 1 to n while(s<>n) do: if T[a]= 1 or T[a]=n2 or (T[a] = n3 and n2+n3<n) then s:=s+T[a]:p:=p*ithprime(a):else fi:if s= n then printf ( "%d %d \n", n, p):
else fi:od:else fi:od:
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 08 2011
STATUS
approved