login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient array for the monic X_1-Laguerre polynomials with parameter k=1.
0

%I #12 Mar 30 2012 18:49:34

%S 0,2,1,-3,0,1,8,-4,-4,1,-30,30,15,-10,1,144,-216,-48,84,-18,1,-840,

%T 1680,0,-700,245,-28,1,5760,-14400,2880,6000,-3120,552,-40,1,-45360,

%U 136080,-52920,-52920,39690,-9702,1071,-54,1,403200,-1411200,806400,470400

%N Coefficient array for the monic X_1-Laguerre polynomials with parameter k=1.

%C The offset is actually n>=1, the entry a(0,0)=0 has been added to have the tabl (triangle) format.

%C The general X_1-Laguerre orthogonal and complete poly-

%C nomial system (OPS) Lhat(k;n,x), with k>0 (not >-1 like in the classical Laguerre case) and n>=1 (not n>=0) has been found by Gomez-Ullate et al. (see the reference and the link), and their notation is

%C {L hat^{(k)}_i(x)}_{i=1}^{infinity}. Because of the start with degree n=1 they are called 1-OPS and this explains also the index 1 at X (for exceptional).

%C The orthogonality interval is [0,infinity) (like in the classical Laguerre case), and the (positive) weight function is What(k;x) = x^k*exp(-x)/(x+k)^2. For the second order differential equation (not of the hypergeometric type), the Rodrigues-type formula, the relation to ordinary generalized Laguerre polynomials, and the three term recurrence relation see the Gomez-Ullate et al. reference or link, eqs. (21) with (24), (77) with (16) and (76), (80) or (82), and (87) (with the z in the second term an x), respectively.

%C Here the monic version of the X_1-Laguerre OPS is used: mLhat(k;n,x) = ((-1)^n)*(n-1)!*Lhat(k;n,x) (not ((-1)^n)*n! like in the classical Laguerre case). For this number triangle k=1. From eq.(87) of the given reference follows the recurrence for the monic polynomials:

%C mLhat(k;n,x) = ((n-2+k)*((x-2*n+3-k)*(x+k)^2 + 2*k)* mLhat(k;n-1,x) - (n-2)*(n-3+k)*((n-1+k)*(x+k)^2-k)*

%C mLhat(k;n-2,x))/((n-2+k)*(x+k)^2-k) for n>=3, with the inputs mLhat(k;1,x)=x+k+1 and mLhat(k;2,x)= x^2-2*k - k^2.

%D David Gomez-Ullate, Niky Kamran, Robert Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl. (2009), 352-367.

%H David Gomez-Ullate, Niky Kamran, and Robert Milson, <a href="http://arxiv.org/abs/0807.3939v2">An extended class of orthogonal polynomials defined by a Sturm-Liouville problem.</a> See also the reference.

%F a(n,m)=[x^m]mLhat(1;n,x), n>=1, m=0,...,n, with the monic orthogonal X_1-Laguerre polynomials mLhat(1;n,x) defined from the non-monic version introduced by Gomez-Ullate et al., and explained in the comment section.

%F Recurrence for the monic polynomials (from eq.(87), with z=x, and k=1 of the Gomez-Ullate et al. reference):

%F mLhat(1;n,x) = ((n-1)*((x-2*n+2)*(x+1)^2 + 2)* mLhat(1;n-1,x) - (n-2)^2*(n*(x+1)^2-1)*mLhat(1;n-2,x))/((n-1)*(x+1)^2-1)for n>=3, with the inputs mLhat(k;1,x)=x+2 and mLhat(k;2,x)= x^2-3.

%e The triangle (without the n=0 entry 0) starts:

%e n\m 0 1 2 3 4 5 6 7 8

%e 1: 2 1

%e 2: -3 0 1

%e 3: 8 -4 -4 1

%e 4: -30 30 15 -10 1

%e 5: 144 -216 -48 84 -18 1

%e 6: -840 1680 0 -700 245 -28 1

%e 7: 5760 -14400 2880 6000 -3120 552 -40 1

%e 8: -45360 136080 -52920 -52920 39690 -9702 1071 -54 1

%e ...

%Y Cf. A021009(n)*(-1)^n (monic Laguerre with parameter 0).

%K sign,easy,tabl

%O 0,2

%A _Wolfdieter Lang_, Nov 26 2011