login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199578
Row sums of coefficient triangle of the monic associated Laguerre polynomials of order 1.
2
1, -2, 4, -6, -16, 310, -3144, 28826, -260000, 2345094, -20901880, 176084986, -1216168944, 1862029910, 186232275544, -6005924996070, 144514137334976, -3177768345524954, 67577079942366120, -1420754665075404166, 29799354626069718640
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A199577(n,k), n>=0.
From Wolfdieter Lang, Dec 12 2011 (Start)
E.g.f. from A199577 with x=1, z->x:
g(x) = -x*exp(-1/(1+x))*(Ei(1,-1/(1+x))-Ei(1,-1))/(1+x)^3 + 1/(1+x)^2, with the exponential integral Ei. In order to obtain the series use first Ei(1,-y/(1+x))-Ei(1,-y), and put y=1 after the expansion.
This e.g.f. satisfies the homogeneous ordinary second order differential equation (1+x)^2*(d^2/dx^2)g(x)+(4+5*x)*(d/dx)g(x)+4*g(x) = 0, with g(0)=1 and (d/dx)g(x)|_{x=0}=-2.
This e.g.f. is equivalent to the recurrence relation:
a(n) = -2*n*a(n-1) - n^2*a(n-2), a(-1)=0, a(0)=1.
(End)
The conjecture on the alternating row sums has been proved by Wolfdieter Lang, Dec 12 2011
MATHEMATICA
RecurrenceTable[{a[n] == -2*n*a[n-1] -n^2*a[n-2], a[0] == 1, a[1] == -2}, a, {n, 0, 40}] (* G. C. Greubel, May 14 2018 *)
PROG
(Magma) I:=[-2, 4]; [1] cat [n le 2 select I[n] else -2*n*Self(n-1) - n^2*Self(n-2): n in [1..30]]; // G. C. Greubel, May 14 2018
(PARI) m=30; v=concat([-2, 4], vector(m-2)); for(n=3, m, v[n]=-2*n*v[n-1]-n^2*v[n-2]); concat([1], v) \\ G. C. Greubel, May 14 2018
CROSSREFS
Cf. A199577 (monic first associated Laguerre), A002793(n+1)*(-1)^n, n>=0 (alternating row sums).
Sequence in context: A071243 A112086 A070325 * A367127 A294920 A046441
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Nov 25 2011
STATUS
approved