login
A199502
From Janet helicoidal classification of the periodic table.
0
1, 2, 3, 4, 5, 10, 11, 12, 13, 18, 19, 20, 21, 30, 31, 36, 37, 38, 39, 48, 49, 54, 55, 56, 57, 70, 71, 80, 81, 86, 87, 88, 89, 102, 103, 112, 113, 118, 119, 120, 121, 138, 139, 152, 153, 162, 163, 168, 169, 170, 171, 188, 189, 202, 203, 212, 213, 218, 219, 220, 221
OFFSET
1,2
COMMENTS
In A199426, we saw how Janet discovered
25 26 43 44
24 27 42 45
7 8 15 16 23 28 33 34 41 46 51 52
6 9 14 17 22 29 32 35 40 47 50 53
1 2 3 4 5 10 11 12 13 18 19 20 21 30 31 36 37 38 39 48 49 54 55 56 57
a(n) is the last row.
a(n+1) - a(n) = 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 9, 1, 5, 1, 1, 1, 9, 1, 5, 1, 1, 1, 13, 1, 9, 1, 5, 1, 1, 1, 13, 1, 9, 1, 5, 1, 1, 1,... = d(n).
Take d(n) by pairs: sums are 2, 2, 6, 2, 6, 2, 2, 10, 6, 2 = A167268.
Take d(n) by 2, 2, 4, 4, 6, 6, 8, 8, terms (in A052928): sums are 2, 2, 8, 8, 18, 18, 32, 32,... = extended A137583= 2, before A093907.
REFERENCES
Charles Janet, La classification hélicoidale des éléments chimiques, novembre 1928, Beauvais, 2+80 pages + 10 leaflets (see 3).
FORMULA
A167268 = 2, 2, 6, 2, 6, 2, repeated = r(n) = 2, 2, 2, 2, 6, 6, 2, 2, 6, 6, 2, 2, 10, 10, 6, 6, 2, 2,...
a(n+2) - a(n) = r(n+1) = 2, 2, 2, 6, 6, 2, 2, n=1,2,3,...
a(2*n+1) - a(2*n) = 1 = A000012.
CROSSREFS
Sequence in context: A362931 A375514 A047596 * A089964 A210495 A179302
KEYWORD
nonn
AUTHOR
Paul Curtz, Nov 07 2011
STATUS
approved