login
A198964
a(n) = (7*9^n - 1)/2.
5
3, 31, 283, 2551, 22963, 206671, 1860043, 16740391, 150663523, 1355971711, 12203745403, 109833708631, 988503377683, 8896530399151, 80068773592363, 720618962331271, 6485570660981443, 58370135948832991, 525331223539496923
OFFSET
0,1
FORMULA
a(n) = 9*a(n-1)+4.
a(n) = 10*a(n-1)-9*a(n-2), n>1.
G.f.: (3 + x)/(1 - 10*x + 9*x^2). - Vincenzo Librandi, Jan 03 2013
From Elmo R. Oliveira, Aug 15 2024: (Start)
E.g.f.: exp(x)*(7*exp(8*x) - 1)/2.
a(n) = A198965(n)/2. (End)
MATHEMATICA
CoefficientList[Series[(3 + x)/(1 - 10 x + 9 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 03 2013 *)
LinearRecurrence[{10, -9}, {3, 31}, 30] (* Harvey P. Dale, Oct 10 2017 *)
PROG
(Magma) [(7*9^n-1)/2: n in [0..20]];
(PARI) a(n)=7*9^n\2 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Cf. A198965.
Sequence in context: A221899 A242134 A221894 * A212730 A236957 A112425
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 01 2011
STATUS
approved