login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198199
G.f.: q-Cosh(x,q)^2 - q-Sinh(x,q)^2 at q=-x.
7
1, 0, -1, -2, -2, -2, -1, 2, 5, 6, 7, 10, 12, 8, -1, -8, -11, -16, -26, -38, -50, -58, -52, -30, -8, 0, 4, 24, 63, 112, 170, 232, 268, 252, 208, 186, 193, 190, 154, 92, -5, -164, -383, -630, -873, -1062, -1128, -1080, -1055, -1172, -1374, -1508, -1508, -1392, -1139, -700, -85, 684, 1627, 2652, 3455
OFFSET
0,4
COMMENTS
This sequence illustrates in part the identities:
* q-Cosh(x,q)^2 - q-Sinh(x,q)^2 = E_q(x,q) / e_q(x,q),
* q-cosh(x,q)^2 - q-sinh(x,q)^2 = e_q(x,q) / E_q(x,q).
Here the following q-analogs are employed (see MathWorld links):
q-cosh(x,q) = Sum_{n>=0} x^(2*n)/faq(2*n,q),
q-sinh(x,q) = Sum_{n>=0} x^(2*n+1)/faq(2*n+1,q),
and the dual expressions:
q-Cosh(x,q) = Sum_{n>=0} q^(n*(2*n-1))*x^(2*n)/faq(2*n,q),
q-Sinh(x,q) = Sum_{n>=0} q^(n*(2*n+1))*x^(2*n+1)/faq(2*n+1,q),
along with the dual q-exponential functions of x:
e_q(x,q) = Sum_{n>=0} x^n/faq(n,q),
E_q(x,q) = Sum_{n>=0} q^(n*(n-1)/2) * x^n/faq(n,q),
where
faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.
LINKS
Eric Weisstein, q-Exponential Function from MathWorld.
Eric Weisstein, q-Cosine Function from MathWorld.
Eric Weisstein, q-Sine Function from MathWorld.
Eric Weisstein, q-Factorial from MathWorld.
FORMULA
(1) G.f.: E_q(x,q) / e_q(x,q) at q=-x, where
e_q(x,-x) = Sum_{n>=0} x^n/Product(k=1, n, (1 - (-x)^k)/(1+x)),
E_q(x,-x) = Sum_{n>=0} (-x)^(n*(n-1)/2) * x^n/Product(k=1, n, (1 - (-x)^k)/(1+x)).
(2) G.f.: exp( -Sum_{n>=1} (1+x)^(2*n)/(1-x^(2*n)) * x^(2*n)/n ).
(3) G.f.: Product_{n>=1} (1 - x^(2*n)*(1+x)^2).
(4) Given g.f. A(x), A( (sqrt(5)-1)/2 ) = 0.
EXAMPLE
G.f.: A(x) = 1 - x^2 - 2*x^3 - 2*x^4 - 2*x^5 - x^6 + 2*x^7 + 5*x^8 +...
The g.f. may be expressed by:
(0) A(x) = q-Cosh(x,q)^2 - q-Sinh(x,q)^2 at q=-x, where
q-Cosh(x,-x) = 1 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 + 2*x^11 + 3*x^12 + 2*x^13 + x^14 + 2*x^15 +...
q-Sinh(x,-x) = x - x^6 - 2*x^7 - 2*x^8 - x^9 - x^12 - 2*x^13 - 2*x^14 + 4*x^16 +...
q-Cosh(x,-x)^2 = 1 - 2*x^3 - 2*x^4 - 2*x^5 - x^6 + x^8 + 2*x^9 + 5*x^10 + 10*x^11 + 13*x^12 +...
q-Sinh(x,-x)^2 = x^2 - 2*x^7 - 4*x^8 - 4*x^9 - 2*x^10 + x^12 + 2*x^13 + 4*x^14 + 6*x^15 +...
(1) A(x) = E_q(x,q) / e_q(x,q) at q=-x, where
e_q(x,-x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 11*x^6 + 17*x^7 + 28*x^8 + 48*x^9 + 80*x^10 + 128*x^11 + 204*x^12 +...
E_q(x,-x) = 1 + x - x^3 - x^4 - x^5 - 2*x^6 - 3*x^7 - 3*x^8 - 2*x^9 + 2*x^11 + 2*x^12 +...
(2) -log(A(x)) = (1+x)^2/(1-x^2)*x^2 + (1+x)^4/(1-x^4)*x^4/2 + (1+x)^6/(1-x^6)*x^6/3 + (1+x)^8/(1-x^8)*x^8/4 +...
(3) A(x) = (1 - x^2*(1+x)^2) * (1 - x^4*(1+x)^2) * (1 - x^6*(1+x)^2) * (1 - x^8*(1+x)^2) * (1 - x^10*(1+x)^2) *...
PROG
(PARI) /* (0) G.f. q-Cosh(x, q)^2 - q-Sinh(x, q)^2 at q=-x: */
{a(n)=local(Cosh_q=sum(k=0, n, (-x)^(k*(2*k-1))*x^(2*k)/(prod(j=1, 2*k, (1-(-x)^j)/(1+x))+x*O(x^n))), Sinh_q=sum(k=0, n, (-x)^(k*(2*k+1))*x^(2*k+1)/(prod(j=1, 2*k+1, (1-(-x)^j)/(1+x))+x*O(x^n)))); polcoeff(Cosh_q^2-Sinh_q^2, n)}
(PARI) /* (1) G.f. E_q(x, q) / e_q(x, q) at q=-x: */
{a(n)=local(e_q=sum(k=0, n, x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n))), E_q=sum(k=0, n, (-x)^(k*(k-1)/2)*x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n)))); polcoeff(E_q/e_q, n)}
(PARI) /* (1) G.f. E_q(x, q) / e_q(x, q) at q=-x: */
{a(n)=local(e_q=exp(sum(k=1, n, x^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n)), E_q=exp(sum(k=1, n, -(-x)^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n))); polcoeff(E_q/e_q, n)}
(PARI) /* (2) G.f. exp( -Sum_{n>=1} (1+x)^(2*n)/(1-x^(2*n)) * x^(2*n)/n): */
{a(n)=polcoeff( exp( -sum(m=1, n\2+1, (1+x)^(2*m)/(1-x^(2*m)+x*O(x^n))*x^(2*m)/m)), n)}
(PARI) /* (3) G.f. Product_{n>=1} (1 - x^(2*n)*(1+x)^2): */
{a(n)=polcoeff(prod(k=1, n, 1-(1+x)^2*x^(2*k)+x*O(x^n)), n)}
CROSSREFS
Cf. A198200 (dual), A152398 (e_q), A198197 (E_q), A198242 (q-Cosh), A198243 (q-Sinh), A198201 (q-cosh), A198202 (q-sinh).
Sequence in context: A303841 A093116 A327799 * A366039 A124369 A205013
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 22 2011
STATUS
approved