login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX4 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,3,1,1,1 for x=0,1,2,3,4
1

%I #5 Mar 31 2012 12:36:29

%S 1,17,81,547,2571,13397,78101,423957,2255611,12173719,66864485,

%T 361733507,1953439221,10607016995,57610139877,312099473393,

%U 1691511381425,9176876436943,49767044309153,269799849310117,1462993236129599

%N Number of nX4 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,3,1,1,1 for x=0,1,2,3,4

%C Every 0 is next to 0 3's, every 1 is next to 1 3's, every 2 is next to 2 1's, every 3 is next to 3 1's, every 4 is next to 4 1's

%C Column 4 of A197401

%H R. H. Hardin, <a href="/A197397/b197397.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +16*a(n-2) +64*a(n-3) +194*a(n-4) -769*a(n-5) -4478*a(n-6) -7191*a(n-7) +1136*a(n-8) +98749*a(n-9) +305317*a(n-10) +113031*a(n-11) -855145*a(n-12) -3960103*a(n-13) -8003637*a(n-14) +6071312*a(n-15) +36866250*a(n-16) +54532523*a(n-17) +52323382*a(n-18) -222157684*a(n-19) -611450451*a(n-20) +139402996*a(n-21) +736924244*a(n-22) +1439732752*a(n-23) +4649367188*a(n-24) -5903777248*a(n-25) -1570629136*a(n-26) +31735304480*a(n-27) -37013117504*a(n-28) -37562412736*a(n-29) -76709663168*a(n-30) -402344530816*a(n-31) +154749368320*a(n-32) +453668937216*a(n-33) +391049388032*a(n-34) +1241962704896*a(n-35) -851087351808*a(n-36) -372069908480*a(n-37) +117954953216*a(n-38) +338885148672*a(n-39) -970218274816*a(n-40) -282461732864*a(n-41) +279479058432*a(n-42) -13514047488*a(n-43) -5435817984*a(n-44)

%e Some solutions containing all values 0 to 4 for n=5

%e ..1..3..1..0....1..3..1..0....1..3..1..2....2..1..3..1....2..1..3..1

%e ..0..1..0..1....2..1..4..1....0..1..4..1....1..4..1..2....1..4..1..2

%e ..0..0..1..3....0..0..1..3....1..4..1..3....3..1..0..0....3..1..2..0

%e ..0..1..4..1....0..2..1..1....3..1..0..1....1..4..1..0....1..0..0..0

%e ..1..3..1..2....0..1..3..1....1..0..0..0....0..1..3..1....0..0..0..0

%K nonn

%O 1,2

%A _R. H. Hardin_ Oct 14 2011