login
A197374
Pi(3): fundamental real period of the Dixonian elliptic functions sm(z) and cm(z).
1
5, 2, 9, 9, 9, 1, 6, 2, 5, 0, 8, 5, 6, 3, 4, 9, 8, 7, 1, 9, 4, 1, 0, 6, 8, 4, 9, 8, 9, 4, 5, 3, 1, 6, 1, 0, 7, 7, 1, 5, 6, 0, 5, 6, 1, 4, 6, 0, 7, 6, 7, 2, 5, 9, 0, 3, 8, 0, 7, 1, 5, 7, 2, 5, 5, 0, 6, 3, 5, 9, 0, 0, 5, 1, 8, 4, 3, 2, 3, 7, 4, 0, 8, 1, 6, 4, 6, 0, 9, 8, 0, 0, 0, 0, 1, 5, 0, 7, 6, 1, 6, 5
OFFSET
1,1
COMMENTS
Pi(3) = 5.29991 62508 56349 87194 ... is the real period of the doubly-periodic Dixonian elliptic functions sm(z) (A104133) and cm(z) (A104134): sm(z+Pi(3)) = sm(z); cm(z+Pi(3)) = cm(z). The other period equals Pi(3)*w, where w = exp(2*I*Pi/3).
REFERENCES
A. C. Dixon, On the doubly periodic functions arising out of the curve x^3 + y^3 - 3 alpha xy = 1, Quarterly J. Pure Appl. Math. 24 (1890), 167-233.
LINKS
E. van Fossen Conrad and P. Flajolet The Fermat cubic, elliptic functions, continued fractions, and a combinatorial excursion, arXiv:math/0507268v1 [math.CO], Sem. Lothar. Combin. 54 (2005/06), Art. B54g, 44 pp.
FORMULA
Pi(3) = 3*int {0..1} 1/(1-t^3)^(2/3) dt = B(1/3,1/3) = Gamma(1/3)^2/Gamma(2/3) = sqrt(3)/(2*Pi)*Gamma(1/3)^3.
EXAMPLE
5.299916250856349...
MATHEMATICA
Sqrt[3]/(2*Pi)*Gamma[1/3]^3 // N[#, 103]& // RealDigits // First (* Jean-François Alcover, Jan 21 2013 *)
PROG
(PARI) sqrt(3)/(2*Pi)*gamma(1/3)^3 \\ Charles R Greathouse IV, Mar 04, 2012
CROSSREFS
Sequence in context: A348408 A019841 A064582 * A119946 A276610 A065270
KEYWORD
easy,nonn,cons
AUTHOR
Peter Bala, Mar 04 2012
STATUS
approved