login
A197070
Decimal expansion of the Dirichlet eta-function at 3.
24
9, 0, 1, 5, 4, 2, 6, 7, 7, 3, 6, 9, 6, 9, 5, 7, 1, 4, 0, 4, 9, 8, 0, 3, 6, 2, 1, 1, 3, 3, 5, 8, 7, 4, 9, 3, 0, 7, 3, 7, 3, 9, 7, 1, 9, 2, 5, 5, 3, 7, 4, 1, 6, 1, 3, 4, 4, 2, 0, 3, 6, 6, 6, 5, 0, 6, 3, 7, 8, 6, 5, 4, 3, 3, 9
OFFSET
0,1
COMMENTS
This constant is irrational by Apéry's theorem. - Charles R Greathouse IV, Feb 11 2024
LINKS
R. Barbieri, J. A. Mignaco and E. Remiddi, Electron form factors up to fourth order. I., Il Nuovo Cim. 11A (4) (1972) 824-864 Table II (4)
Su Hu, Min-soo Kim, Euler's integral, multiple cosine function and zeta values, arXiv:2201.011247 (2023), series last equation.
Seán Stewart, Problem 12206, The American Mathematical Monthly, Vol. 127, No. 8 (2020), p. 752.
FORMULA
Equals 3*zeta(3)/4 = 3*A002117/4.
Also equals the integral over the unit cube [0,1]x[0,1]x[0,1] of 1/(1+x*y*z) dx dy dz. - Jean-François Alcover, Nov 24 2014
Equals Sum_{n>=1} (-1)^(n+1)/n^3. - Terry D. Grant, Aug 03 2016
Equals Lim_{n -> infinity} A136675(n)/A334582(n). - Petros Hadjicostas, May 07 2020
Equals Sum_{n>=1} AH(2*n)/n^2, where AH(n) = Sum_{k=1..n} (-1)^(k+1)/k = A058313(n)/A058312(n) is the n-th alternating harmonic number (Stewart, 2020). - Amiram Eldar, Oct 04 2021
Equals -int_0^1 log(x)log(1+x)/x dx [Barbieri] - R. J. Mathar, Jun 07 2024
EXAMPLE
0.9015426773696957140498036211335874930737...
MAPLE
3*Zeta(3)/4 ; evalf(%) ;
MATHEMATICA
RealDigits[3(Zeta[3])/4, 10, 75][[1]] (* Bruno Berselli, Dec 20 2011 *)
PROG
(PARI) -polylog(3, -1) \\ Charles R Greathouse IV, Mar 28 2012
(PARI) 3/4*zeta(3) \\ Charles R Greathouse IV, Mar 28 2012
CROSSREFS
Cf. A002117 (zeta(3)), A058312, A058313, A072691, A136675, A233090 (5*zeta(3)/8), A233091 (7*zeta(3)/8), A334582.
Sequence in context: A361060 A364830 A345738 * A197333 A226120 A244593
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Oct 09 2011
STATUS
approved