login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196202
a(n) = 2^(prime(n)-1) mod prime(n)^2.
12
2, 4, 16, 15, 56, 40, 222, 58, 392, 30, 187, 38, 944, 1076, 2069, 1909, 473, 2197, 671, 143, 4089, 1502, 3985, 535, 5530, 9293, 6078, 1392, 7304, 9380, 2287, 2228, 7262, 4171, 14305, 8457, 12875, 10922, 7850, 520, 8951, 26789, 9551, 20073, 34476, 26866
OFFSET
1,1
COMMENTS
a(A049084(A001220(1))) = a(A049084(A001220(2))) = 1.
REFERENCES
N. G. W. H. Beeger, On a new case of the congruence 2^(p-1) ≡ 1 (p^2), Messenger of Mathematics 51, (1922), p. 149-150
Paulo Ribenboim, 1093 (Chap 8), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 213ff.
LINKS
W. Meissner, Über die Teilbarkeit von 2^p-2 durch das Quadrat der Primzahl p = 1093, Sitzungsberichte Königlich Preussischen Akadamie Wissenschaften Berlin, 35 (1913), 663-667. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Wieferich Prime.
Wikipedia, Wieferich prime.
EXAMPLE
A001220(1)=1093=A000040(183): a(183)=1, or a(A049084(A001220(1)))=1;
A001220(2)=3511=A000040(490): a(490)=1, or a(A049084(A001220(2)))=1.
MAPLE
seq(2 &^ (ithprime(n)-1) mod ithprime(n)^2, n=1..1000); # Robert Israel, Aug 03 2014
MATHEMATICA
PowerMod[2, #-1, #^2]&/@Prime[Range[50]] (* Harvey P. Dale, Apr 25 2012 *)
PROG
(PARI) forprime(p=2, 1e2, print1(lift(Mod(2, p^2)^(p-1)), ", ")) \\ Felix Fröhlich, Aug 03 2014
(Haskell)
import Math.NumberTheory.Moduli (powerMod)
a196202 n = powerMod 2 (p - 1) (p ^ 2) where p = a000040 n
-- Reinhard Zumkeller, May 18 2015
CROSSREFS
Cf. A061286.
Sequence in context: A186008 A067846 A155893 * A135569 A370874 A337109
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Sep 29 2011
STATUS
approved