login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194634
Numbers n such that k= n^2 + n + 41 is composite and there is no integer x such that n= x^2 + 40; n= (x^2+x)/2 + 81; or n= 3*x^2 - 2x + 122.
3
127, 138, 155, 163, 164, 170, 173, 178, 185, 190, 204, 205, 207, 208, 213, 215, 216, 232, 237, 239, 242, 244, 245, 246, 248, 249, 251, 256, 259, 261, 266, 268, 270, 278, 279, 283, 284, 286, 287, 289, 295, 299, 300, 301, 302, 309, 314, 321, 325, 326, 327, 328
OFFSET
1,1
COMMENTS
The parabola curve fit: p1(0)=40; p1(1)=41; p1(2)=44 yields p1(x)=x^2+40. A second fit: p2(0)=81; p2(1)=82; p2(2)=84 yields p2(x)=(x^2+x)/2 + 81. A third fit: p3(0)=122; p3(1)=123; p3(2)=130 yields p3(x)=3x^2-2*x+122.
Substituting n=x^2 into k=n^2+n+41 is factorable as: k1=(x^2+x+41)*(x^2-x+41). This shows that all lattice points on p1 produce a composite k.
Similarly, substituting n=(x^2-x)/2 + 81 into k factors as k2=(x^2+163)*(x^2+2*x+164)/4. So all lattice points on p2 produce a composite k.
Similarly, substituting n=3*x^2-2*x+122 into k factors as k3=(x^2-x+41)*(9*x^2-3*x+367). So all lattice points on p3 produce a composite k.
This procedure can be continued with p4(x)=3*x^2+8*x+127, p5(x)=4*x^2-3*x+163, p6(x)=4*x^2+11*x+170, p7(x)=5*x^2-4*x+204, p8(x)=5*x^2+14*x+213, p9(x)=(3*x^2-x)/2+244, p10(x)=(3*x^2+7*x)/2+246, and so on.
REFERENCES
John Stillwell, Elements of Number Theory, Springer, 2003, page 3.
R. Crandall and C. Pomerance, Prime Numbers A Computational Perspective 2nd ed., Springer, 2005, page 21.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
FORMULA
a(n) ~ n. - Charles R Greathouse IV, Apr 25 2014
MAPLE
A007634:={}:
for n from 1 to 1000 do
k:=n^2+n+41:
if isprime(k)=false then
A007634:=A007634 union {n}:
end if:
end do:
pv1:=Vector(1000, j->(j-1)^2+40):
p1:=convert(pv1, set):
A055390:=A007634 minus p1 minus {0}:
pv2:=Vector(1000, j->((j-1)^2+(j-1))/2+81):
p2:=convert(pv2, set):
A194565:=A055390 minus p2:
pv3:=Vector(1000, j->(3*(j-1)^2-2*(j-1)+122)):
p3:=convert(pv3, set):
p3set:=A194565 minus p3;
PROG
(PARI) is(n)=!isprime(n^2+n+41) && !issquare(n-40) && !issquare(8*n-647) && n > 126 && (x->3*x^2-2*x+122)(round((1+sqrt(3*n-365))/3))!=n \\ Charles R Greathouse IV, Apr 25 2014
CROSSREFS
Cf. A007634 (n such that n^2+n+41 is composite).
Cf. A055390 (members of A007634 that are not lattice points of x^2+40).
Cf. A194565 (members of A055390 that are not lattice points of (x^2+x)/2 + 81).
Sequence in context: A133781 A255227 A153815 * A126096 A334095 A164966
KEYWORD
nonn,easy
AUTHOR
Matt C. Anderson, Aug 30 2011
EXTENSIONS
Fixed subscripts in first comment. Added * in 4th comment. Added 5th comment. Changed g to k for consistancy. Improved Maple code. Added second book reference. Changed name to agree with comment of editor.
STATUS
approved