login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194454
a(n) = 12*n^2 + 2*n + 1.
4
1, 15, 53, 115, 201, 311, 445, 603, 785, 991, 1221, 1475, 1753, 2055, 2381, 2731, 3105, 3503, 3925, 4371, 4841, 5335, 5853, 6395, 6961, 7551, 8165, 8803, 9465, 10151, 10861, 11595, 12353, 13135, 13941, 14771, 15625, 16503, 17405, 18331, 19281
OFFSET
0,2
COMMENTS
A142241 gives the first differences.
Inverse binomial transform of this sequence: 1, 14, 24, 0, 0 (0 continued).
a(n)*a(n-1)-11 is a square, precisely 4*A051866(n)^2.
Sequence found by reading the line from 1, in the direction 1, 15, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012
FORMULA
G.f.: (1+x)*(1+11*x)/(1-x)^3.
a(n) = A154106(-n-1).
a(n) = 2*A049453(n) + 1.
a(n) = A051866(n) + A051866(n+1). - Charlie Marion, Nov 15 2019
E.g.f.: exp(x)*(1 + 14*x + 12*x^2). - Stefano Spezia, Nov 15 2019
EXAMPLE
Using these numbers we can write:
1, 15, 53, 115, 201, 311, 445, 603, 785, 991, 1221, ...
0, 0, 1, 15, 53, 115, 201, 311, 445, 603, 785, ...
0, 0, 0, 0, 1, 15, 53, 115, 201, 311, 445, ...
0, 0, 0, 0, 0, 0, 1, 15, 53, 115, 201, ...
0, 0, 0, 0, 0, 0, 0, 0, 1, 15, 53, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ...
======================================================
The sums of the columns give the sequence A172073 (after 0):
1, 15, 54, 130, 255, 441, 700, 1044, 1485, 2035, 2706, ...
MATHEMATICA
Table[12 n^2 + 2 n + 1, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)
PROG
(Magma) [12*n^2+2*n+1: n in [0..40]];
(PARI) for(n=0, 40, print1(12*n^2+2*n+1", "));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Aug 24 2011
STATUS
approved