login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193575
T(n)^3 - n^3 where T(n) is a triangular number.
1
0, 19, 189, 936, 3250, 9045, 21609, 46144, 90396, 165375, 286165, 472824, 751374, 1154881, 1724625, 2511360, 3576664, 4994379, 6852141, 9253000, 12317130, 16183629, 21012409, 26986176, 34312500, 43225975, 53990469, 66901464, 82288486, 100517625, 121994145
OFFSET
1,2
FORMULA
a(n) = (n^3*(n^3+3*n^2+3*n-7)/8) = (1/8)*(n-1)*(n^2+4*n+7)*n^3.
From Wesley Ivan Hurt, Aug 23 2014: (Start)
G.f.: x^2*(19+56*x+12*x^2+2*x^3+x^4)/(1-x)^7.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
a(n) = sum_{i=1..n} sum_{j=1..n} sum_{k=1..n} (i*j*k-1).
a(n) = A000217(n)^3 - A000578(n), n > 0.
(End)
MAPLE
A193575:=n->n^3*(n^3+3*n^2+3*n-7)/8: seq(A193575(n), n=1..40); # Wesley Ivan Hurt, Aug 23 2014
MATHEMATICA
Table[n^3*(n^3 + 3*n^2 + 3*n - 7)/8, {n, 40}] (* Wesley Ivan Hurt, Aug 23 2014 *)
CoefficientList[Series[x*(19 + 56 x + 12 x^2 + 2 x^3 + x^4)/(1 - x)^7, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 23 2014 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 19, 189, 936, 3250, 9045, 21609}, 40] (* Harvey P. Dale, Oct 24 2020 *)
PROG
(Magma) [(n^3*(n^3+3*n^2+3*n-7)/8): n in [1..40]]
CROSSREFS
Sequence in context: A211866 A327848 A034273 * A161512 A162347 A161879
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 08 2011
STATUS
approved