login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193263
G.f.: A(x) = x + Sum_{n>=1} x^(2*n) / (1+x)^A193259(n).
1
1, 1, -1, 2, -5, 12, -26, 52, -101, 201, -422, 927, -2070, 4579, -9894, 20789, -42517, 84937, -166570, 322700, -622500, 1207056, -2376168, 4787523, -9908610, 21021499, -45404102, 98952388, -215756156, 467541948, -1002478352, 2121546013, -4427208709, 9110572776, -18503242145, 37135048484, -73759839074
OFFSET
1,4
COMMENTS
Note: A193259(n) = n + floor(log_2(n)) + A011371(n), where A011371(n) = highest power of 2 dividing n!.
The g.f. A(x), as a power series in x, diverges at x=-1/2 and converges at x=+1/2 to A(1/2) = 0.6811907120229079095390167697...
Other values: A(x) = 1/2 at x = 0.385874434537804442263..., A(x) = 1 at x = 0.685568171776262105563..., A((sqrt(5)-1)/2) = 0.880771363850914609641...
FORMULA
G.f.: A(x) = Sum_{n>=1} x^n / (1+x)^(A193259(n) - n).
EXAMPLE
G.f.: A(x) = x + x^2 - x^3 + 2*x^4 - 5*x^5 + 12*x^6 - 26*x^7 + 52*x^8 +...
where
A(x) = x + x^2/(1+x)^1 + x^4/(1+x)^4 + x^6/(1+x)^5 + x^8/(1+x)^9 + x^10/(1+x)^10 + x^12/(1+x)^12 + x^14/(1+x)^13 + x^16/(1+x)^18 +...+ x^(2*n)/(1+x)^A193259(n) +...
Also,
A(x) = x/(1+x)^0 + x^2/(1+x)^2 + x^3/(1+x)^2 + x^4/(1+x)^5 + x^5/(1+x)^5 + x^6/(1+x)^6 + x^7/(1+x)^6 + x^8/(1+x)^10 +...+ x^n/(1+x)^(A193259(n)-n) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=1, n, x^m/(1+x+x*O(x^n))^(floor(log(m+1/2)/log(2)) + valuation(m!, 2))), n)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 19 2011
STATUS
approved