login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193169
Number of odd divisors of lambda(n).
4
1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 1, 4, 1, 2, 1, 2, 2, 3, 3, 2, 1, 2, 2, 4, 2, 2, 2, 2, 1, 4, 2, 1, 2, 2, 3, 2, 2, 3, 2, 2, 1, 4, 4, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 3, 3, 2, 3, 4, 2, 4, 1
OFFSET
1,7
COMMENTS
Lambda is the function in A002322.
LINKS
FORMULA
a(n) = A001227(A002322(n)). - Michel Marcus, Mar 18 2016
EXAMPLE
a(19) = 3 because lambda(19) = 18 and the 3 odd divisors are {1, 3, 9}.
MATHEMATICA
f[n_] := Block[{d = Divisors[CarmichaelLambda[n]]}, Count[OddQ[d], True]]; Table[f[n], {n, 80}]
PROG
(Haskell)
a193169 = length . filter odd . a027750_row . a002322
-- Reinhard Zumkeller, Sep 02 2014
(PARI) a(n) = sumdiv(lcm(znstar(n)[2]), d, (d%2)); \\ Michel Marcus, Mar 18 2016
CROSSREFS
Cf. A002322.
Sequence in context: A231776 A055734 A295660 * A193453 A227944 A095772
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 22 2011
STATUS
approved