login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Semiprimes m = p*q such that p-1 and q-1 are semiprimes.
2

%I #21 Mar 23 2018 04:02:41

%S 25,35,49,55,77,115,121,161,235,253,295,329,413,415,517,529,535,581,

%T 649,749,835,895,913,1081,1135,1169,1177,1253,1315,1357,1589,1735,

%U 1795,1837,1841,1909,1915,1969,2209,2335,2395,2429,2461,2497,2513,2515,2681,2773,2815,2893,2935

%N Semiprimes m = p*q such that p-1 and q-1 are semiprimes.

%C Numbers of the form A005385(i)*A005385(j) for i,j >= 1. - _Altug Alkan_, Mar 22 2018

%H Robert Israel, <a href="/A193165/b193165.txt">Table of n, a(n) for n = 1..10000</a>

%e 1969 is in the sequence because 1969 = 11*179, and 11-1 = 2*5 and 179-1 = 2*89 are semiprimes.

%p with(numtheory):for n from 2 to 3000 do: x:=factorset(n):y:=bigomega(n):z:=x[1]:zz:=n/z:if y=2 and type(z,prime)=true and type(zz,prime) = true and bigomega(z-1)=2 and bigomega(zz-1)=2 then printf(`%d, `, n): else fi:od:

%p # Alternate:

%p N:= 10000: # to get all terms <= N

%p P:= select(p -> isprime(p) and numtheory:-bigomega(p-1)=2, [$1..N/5]):

%p nP:= nops(P):

%p sort(select(`<=`, [seq(seq(P[i]*P[j], i=1..j), j=1..nP)], N)); # _Robert Israel_, Mar 23 2018

%t spsQ[n_]:=Module[{f=Transpose[FactorInteger[n]][[1]]},PrimeOmega[n] == PrimeOmega[First[f]-1] == PrimeOmega[Last[f]-1]==2]; Select[Range[ 3000], spsQ] (* _Harvey P. Dale_, Jul 27 2011 *)

%o (PARI) upTo(lim)=my(u=List(),v=List(),t);forprime(p=2,lim\5,if(isprime(p\2),listput(u,p)));for(i=1,#u,for(j=1,i,t=u[i]*u[j];if(t>lim,break,listput(v,t))));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 30 2011

%Y Subsequence of A001358.

%Y Cf. A005385, A193227.

%K nonn

%O 1,1

%A _Michel Lagneau_, Jul 17 2011