Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Nov 10 2016 03:50:01
%S 1,1,3,17,152,1944,33404,738212,20316288,679237248,27050017152,
%T 1262790237312,68193683598336,4212508572109824,294822473048043264,
%U 23184842446161993984,2033884583922970558464,197767395237549512097792,21194678534706844531458048
%N E.g.f. A(x) satisfies: A(x/(1-x))/(1-x) = d/dx x*A(x).
%C In Cellarosi and Sinai (2011) on page 257, m_k denotes a(k)/k!. - _Michael Somos_, Dec 28 2012
%H Alois P. Heinz, <a href="/A193161/b193161.txt">Table of n, a(n) for n = 0..293</a>
%H F. Cellarosi and Ya. G. Sinai, <a href="http://dx.doi.org/10.1007/s13373-011-0011-6">The Möbius function and statistical mechanics</a>, Bull. Math. Sci., 2011.
%F a(n) = (n-1)!* Sum_{k=0..n-1} binomial(n,k)*a(k)/k! for n>0 with a(0)=1.
%F a(n) = A193160(n+1)/(n+1).
%F E.g.f.: exp( Sum_{n>=1} x^n/(n*n!) ) = Sum_{n>=0} a(n)*x^n/n!^2.
%F a(n) = n! * A177208(n) / A177209(n) for n>=1 (see comment from Michael Somos).
%e E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 152*x^4/4! + 1944*x^5/5! + ...
%e Related expansions:
%e A(x/(1-x))/(1-x) = 1 + 2*x + 9*x^2/2! + 68*x^3/3! + 760*x^4/4! + ...
%e A(x) + x*A'(x) = 1 + 2*x + 9*x^2/2! + 68*x^3/3! + 760*x^4/4! + ...
%e Also, a(n) appears in the expansion:
%e B(x) = 1 + x + 3*x^2/2!^2 + 17*x^3/3!^2 + 152*x^4/4!^2 + 1944*x^5/5!^2 + ...
%e where
%e log(B(x)) = x + x^2/(2*2!) + x^3/(3*3!) + x^4/(4*4!) + x^5/(5*5!) + ...
%p b:= proc(n) option remember; `if`(n=0, 1,
%p add(b(n-i)*binomial(n-1, i-1)/i, i=1..n))
%p end:
%p a:= n-> b(n)*n!:
%p seq(a(n), n=0..25); # _Alois P. Heinz_, May 11 2016
%t a[ n_] := If[ n<0, 0, n!^2 Assuming[ x>0, SeriesCoefficient[ Exp[ Integrate[ (Exp[t] - 1)/t, {t, 0, x}]], {x, 0, n}]]]; (* _Michael Somos_, Dec 28 2012 *)
%t a[ n_] := If[ n<0, 0, n!^2 Assuming[ x>0, SeriesCoefficient[ Exp[ ExpIntegralEi[x] - Log[x] - EulerGamma], {x, 0, n}]]]; (* _Michael Somos_, Dec 28 2012 *)
%t Table[Sum[BellY[n, k, 1/Range[n]], {k, 0, n}] n!, {n, 0, 20}] (* _Vladimir Reshetnikov_, Nov 09 2016 *)
%o (PARI) {a(n)=local(A=1+x,B);for(i=1,n,B=subst(A,x,x/(1-x+x*O(x^n)))/(1-x);A=1+intformal((B-A)/x));n!*polcoeff(A,n)}
%o (PARI) {a(n)=if(n<0,0,if(n==0,1,(n-1)!*sum(k=0,n-1,binomial(n,k)*a(k)/k!)))}
%o (PARI) {a(n)=n!^2*polcoeff(exp(sum(m=1,n,x^m/(m*m!))+x*O(x^n)),n)}
%Y Cf. A023998, A193160, A209884.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jul 16 2011