login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193160
E.g.f. A(x) satisfies: A(x/(1-x)) = x*A'(x).
1
1, 2, 9, 68, 760, 11664, 233828, 5905696, 182846592, 6792372480, 297550188672, 15153482847744, 886517886778368, 58975120009537536, 4422337095720648960, 370957479138591903744, 34576037926690499493888, 3559813114275891217760256
OFFSET
1,2
FORMULA
a(n) = n*(n-2)!* Sum_{k=1..n-1} C(n-1,k-1)* a(k)/k! for n>1 with a(1)=1.
a(n) = n*A193161(n-1).
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 68*x^4/4! + 760*x^5/5! +...
Related expansions:
A(x/(1-x)) = x + 4*x^2/2! + 27*x^3/3! + 272*x^4/4! + 3800*x^5/5! +...
x*A'(x) = x + 4*x^2/2! + 27*x^3/3! + 272*x^4/4! + 3800*x^5/5! +...
PROG
(PARI) {a(n)=local(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A]=Vec(subst(F, x, x/(1-x)))[#A]/(#A-1)); if(n<1, 0, n!*A[n])}
(PARI) {a(n)=if(n<1, 0, if(n==1, 1, n!/(n-1)*sum(k=1, n-1, binomial(n-1, k-1)*a(k)/k!)))}
CROSSREFS
Sequence in context: A120980 A020563 A354730 * A255537 A272663 A006849
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 16 2011
STATUS
approved