login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192722
T(n,k) = Sum of multinomial(n; n_1,n_2,...,n_k)^2, where the sum extends over all compositions (n_1,n_2,...,n_k) of n into exactly k nonnegative parts.
4
1, 1, 4, 1, 18, 36, 1, 68, 432, 576, 1, 250, 3900, 14400, 14400, 1, 922, 32400, 252000, 648000, 518400, 1, 3430, 262542, 3880800, 19404000, 38102400, 25401600, 1, 12868, 2119152, 56664384, 493920000, 1795046400, 2844979200, 1625702400
OFFSET
1,3
COMMENTS
Compare with triangle A019538, whose entries are given by
... Sum multinomial(n; n_1,n_2,...,n_k), where the sum extends over all compositions (n_1,n_2,...,n_k) of n into exactly k nonnegative parts.
For related tables see A061691 and A192721.
Let P be the poset of all ordered pairs (S,T) of subsets of [n] with |S|=|T|, ordered componentwise by inclusion. T(n,k) is the number of length k chains in P from ({},{}) to ([n],[n]). - Geoffrey Critzer, Apr 15 2020
LINKS
FORMULA
Generating function: Let J(z) = Sum_{n>=0} z^n/n!^2. Then
1 + Sum_{n>=1} (Sum_{k = 1..n} T(n,k)*x^k)*z^n/n!^2) = 1/(1 - x*(J(z) - 1))
= 1 + x*z + (x + 4*x^2)*z^2/2!^2 + (x + 18*x^2 + 36*x^3)* z^3/3!^2 + ....
Relations with other sequences:
The change of variable z -> z/x followed by x -> 1/(x - 1) transforms the above bivariate generating function 1/(1 - x*(J(z) - 1)) into (1 - x)/(-x + J(z*(x-1))), which is the generating function for A192721.
1/k!*T(n,k) = A061691(n,k).
T(n,n) = n!^2 = A001044(n).
Row sums = A102221.
For n>=1, Sum_{k = 1..n} (-1)^(n+k)*T(n,k)/k = A002190(n).
EXAMPLE
The triangle begins
n/k|..1.....2.......3........4........5........6
================================================
.1.|..1
.2.|..1.....4
.3.|..1....18.....36
.4.|..1....68.....432......576
.5.|..1...250....3900....14400....14400
.6.|..1...922...32400...252000...648000...518400
...
T(4,2) = 68:
There are 3 compositions of 4 into 2 parts, namely, 4 = 2 + 2 = 1 + 3 = 3 + 1; hence
T(4,2) = (4!/(2!*2!))^2 + (4!/(1!*3!))^2 + (4!/(3!*1!))^2
= 36 + 16 + 16 = 68.
Matrix identity: A192721 * Pascal's triangle = row reverse of A192722:
/...1................\ /..1..............\
|...3.....1...........||..1....1..........|
|..19....16.....5.....||..1....2....1.....|
|.211...299....65....1||..1....3....3....1|
|.....................||..................|
=
/...1...................\
|...4......1.............|
|..36.....18......1......|
|.576....432.....68.....1|
|........................|
MAPLE
J := unapply(BesselJ(0, 2*sqrt(-1)*sqrt(z)), z):
G := 1/(1-x*(J(z)-1)):
Gser := simplify(series(G, z = 0, 15)):
for n from 1 to 14 do
P[n] := n!^2*sort(coeff(Gser, z, n)) od:
for n from 1 to 14 do seq(coeff(P[n], x, k), k = 1..n) od;
# yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; expand(
`if`(n=0, 1, add(x*b(n-i)/i!^2, i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)*n!^2):
seq(T(n), n=1..14); # Alois P. Heinz, Sep 10 2019
MATHEMATICA
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[x b[n-i]/i!^2, {i, 1, n}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n] n!^2];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
CROSSREFS
Cf. A001044, A002190, A061691, A192721, A102221 (row sums), A000275 (alternating row sums).
Sequence in context: A077102 A258152 A259051 * A300141 A057968 A141233
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Bala, Jul 11 2011
STATUS
approved