login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192717
Positive integers of the form (p^e)(k^2) for p prime congruent to 3 (mod 8), e congruent to 1 (mod 4), and k an odd integer coprime to p.
2
3, 11, 19, 43, 59, 67, 75, 83, 99, 107, 131, 139, 147, 163, 171, 179, 211, 227, 243, 251, 275, 283, 307, 331, 347, 363, 379, 387, 419, 443, 467, 475, 491, 499, 507, 523, 531, 539, 547, 563, 571, 587, 603, 619, 643, 659, 683, 691, 739, 747, 787, 811, 827
OFFSET
1,1
COMMENTS
This sequence is equivalent to all of the following sets (written in increasing order):
- all integers the form (p^e)(k^2) for p prime congruent to 3 (mod 8), e congruent to 1 (mod 4), and k an odd number coprime to p;
- all integers with an odd number of representations as x^2 + 2y^2 for odd x and y; and
- elements of A192628 which are congruent to 3 (mod 8).
LINKS
Joshua N. Cooper, Dennis Eichhorn and Kevin O'Bryant, Reciprocals of binary power series, International Journal of Number Theory, Vol. 2, No. 4 (2006), pp. 499-522; arXiv preprint, arXiv:math/0506496 [math.NT], 2005.
Joshua N. Cooper and Alexander W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, J. Int. Seq., Vol. 16 (2013), Article #13.1.8; alternative link.
EXAMPLE
3 is in the sequence since 3 = (3^1)(1^2); 3 is prime and congruent to 3 (mod 8), 1 is congruent to 1 (mod 4), and 1 is an odd integer coprime to 3.
6 is not in the sequence: since it is squarefree, k must be 1, but 6 cannot be written as p^e.
27 is not in the sequence: the only possible values for k are 1 and 3. In the k=1 case, 27 = (3^3)(1^2) does not work since e = 3 is not congruent to 1 (mod 4), and in the k=3 case, 27 = (3^1)(3^2), k=3 and p=3 are not coprime.
243 is in the sequence since 243 = (3^5)(1^2); 3 is prime and congruent to 3 (mod 8), 5 is congruent to 1 (mod 4), and 1 is an odd integer coprime to 3.
MATHEMATICA
ofTheFormQ[n_] := If[Length[fin = FactorInteger[n]] == 1 && Mod[fin[[1, 1]], 8] == 3 && Mod[fin[[1, 2]], 4] == 1, True, pe = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ fin); k = Sqrt[n/pe]; fip = FactorInteger[pe]; Length[fip] == 1 && Mod[p = fip[[1, 1]], 8] == 3 && Mod[e = fip[[1, 2]], 4] == 1 && OddQ[k] && CoprimeQ[k, p]]; Select[Range[1, 999, 2], ofTheFormQ] (* Jean-François Alcover, Jan 22 2013 *)
PROG
(Sage)
prec = 2^10
L = []
for n in range(1, prec, 2):
n = Integer(n)
sfp = n.squarefree_part()
if mod(sfp, 8) == 3 and sfp.is_prime() and mod(n.ord(sfp), 4) == 1:
L.append(n)
print(L)
(Sage)
def BPS(n): #binary power series
return sum([q^s for s in n])
prec = 2^14
R = PowerSeriesRing(GF(2), 'q', default_prec = prec)
q = R.gen()
dList = [(2*n+1)^2 for n in range(0, (sqrt(prec)-1)/2)]
dSeries = BPS(dList)
print((dSeries^3).exponents()[:128])
CROSSREFS
Cf. A192628.
Sequence in context: A219527 A161429 A079544 * A163183 A007520 A294912
KEYWORD
nonn
AUTHOR
STATUS
approved