login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192628
Nonvanishing exponents of the reciprocal of the modulo 2 generating function for the sum-of-divisor function.
4
0, 1, 3, 7, 9, 11, 19, 25, 43, 49, 55, 59, 67, 71, 75, 81, 83, 87, 99, 103, 107, 119, 121, 131, 139, 147, 163, 169, 171, 179, 183, 211, 225, 227, 243, 251, 263, 275, 279, 283, 289, 307, 331, 343, 347, 361, 363, 375, 379, 387, 391, 419, 439, 441, 443, 455
OFFSET
0,3
COMMENTS
Consider sigma, the sum-of-positive-divisor function with s(0) := 1. Let Sigma(q) be the *binary* generating function for sigma, namely
Sigma(q) := sigma(0)q^0 + sigma(1)q^1 + sigma(2)q^2 + sigma(3)q^3 + sigma(4)q^4 + ...
More precisely, we require that Sigma(q) is binary in the sense of reducing all coefficients modulo 2. Thus, the coefficient of q^k is 0 if sigma(k) is even, odd otherwise. One could equivalently define Sigma(q) to be the sum of all q^k (for k nonnegative) such that sigma(k) is odd. The terms of the given sequence are the exponents of the nonvanishing monomials of the reciprocal 1/Sigma(q). Other equivalent definitions for this sequence can be discovered through appeals to representation theory.
Density upper bound: 1/16. Conjectured density: 1/32. Contains only 0 and positive integers congruent to 1 and 3 (mod 8) and 7 (mod 16).
Congruence class:
*0 (mod 8): 0, density 0
*1 (mod 8): odd squares, density 0
*3 (mod 8): integers of the form (p^e)(k^2) for p prime congruent to 3 (mod 8), e congruent to 1 (mod 4), and k odd and coprime to p, density 0
*7 (mod 16): conjectured density 1/32 with upper bound 1/16.
After a(0)=0, these are the positive integers which have an odd number of representations as a sum of positive integers which have odd divisor sum. A positive integer k has odd divisor sum if and only if k is a square or twice a square (A028982). For example, a(2) = 3 can be represented as: 2+1, 1+2, or 1+1+1, 3 representations
REFERENCES
J. Cooper, D. Eichhorn, and K. O'Bryant, Reciprocals of binary power series, International Journal of Number Theory, 2 no. 4 (2006), 499-522.
PROG
(Sage)
prec = 2^14
R = PowerSeriesRing(GF(2), 'q', default_prec = prec)
q = R.gen()
def sigma(n):
return sum(Integer(n).divisors())
def BPS(n): #binary power series
return sum([q^s for s in n])
sigmaList = [0] + [n for n in range(1, prec) if mod(sigma(n), 2) == 1]
sigmaSeries = BPS(sigmaList)
print((1/sigmaSeries).exponents()[:128])
CROSSREFS
Cf. A028982.
Sequence in context: A197504 A167800 A270834 * A336655 A003538 A018596
KEYWORD
nonn
AUTHOR
STATUS
approved