login
A192369
Number of lattice paths from (0,0) to (n,n) using steps (0,1), (0,2), (1,0), (2,0), and (2,2).
7
1, 2, 15, 90, 617, 4248, 29945, 213404, 1535661, 11129314, 81123369, 594092166, 4367701295, 32216566492, 238301617605, 1766979857196, 13129849298327, 97746629874786, 728897653778335, 5443488765350770, 40706993579981847, 304779612155116444, 2284440756129389775, 17139937071103287600
OFFSET
0,2
FORMULA
G.f. is a nested square root, see Maple program. - Mark van Hoeij, Apr 16 2013
MAPLE
p4 := (x-1)*(x^3+5*x^2+7*x-1);
ogf := sqrt(((2*x^2+4*x-3)/p4-2/sqrt(p4))/(4*x^2-8*x-5));
series(ogf, x=0, 30); # Mark van Hoeij, Apr 16 2013
PROG
(PARI) /* same as in A092566 but use */
steps=[[0, 1], [0, 2], [1, 0], [2, 0], [2, 2]];
/* Joerg Arndt, Jun 30 2011 */
CROSSREFS
Sequence in context: A275794 A037746 A037627 * A037753 A037641 A361303
KEYWORD
nonn
AUTHOR
Eric Werley, Jun 29 2011
EXTENSIONS
Terms > 81123369 from Joerg Arndt, Jun 30 2011
STATUS
approved