login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191821
a(n) = n*(2^n - n + 1) + 2^(n-1)*(n^2 - 3*n + 2).
1
2, 6, 26, 100, 332, 994, 2774, 7368, 18872, 47014, 114578, 274300, 647012, 1507146, 3473198, 7929616, 17956592, 40369870, 90177194, 200277636, 442498652, 973078066, 2130705926, 4647288280, 10099883432, 21877489014, 47244639554, 101737037068
OFFSET
1,1
COMMENTS
Conjecture: generating function = -((2 (-1+6 x-19 x^2+31 x^3-22 x^4+4 x^5))/(1-3 x+2 x^2)^3) - Harvey P. Dale, May 10 2021
FORMULA
G.f.: -2*x*(-1 + 6*x - 19*x^2 + 31*x^3 - 22*x^4 + 4*x^5) / ( (2*x-1)^3*(x-1)^3 ). - R. J. Mathar, Aug 26 2011
MATHEMATICA
LinearRecurrence[{9, -33, 63, -66, 36, -8}, {2, 6, 26, 100, 332, 994}, 50] (* Vincenzo Librandi, Nov 25 2011 *)
Table[n(2^n-n+1)+2^(n-1) (n^2-3n+2), {n, 30}] (* Harvey P. Dale, May 10 2021 *)
PROG
(PARI) a(n)=(n^2-n+2)<<(n-1)-n*(n-1) \\ Charles R Greathouse IV, Jul 13 2011
(Magma) [n*(2^n-n+1)+2^(n-1)*(n^2-3*n+2): n in [1..40]]; // Vincenzo Librandi, Nov 25 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Adeniji, Adenike, Jun 17 2011
STATUS
approved