login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191817
E.g.f. sin(arctan(log(1+x))).
0
0, 1, -1, -1, 12, -36, -120, 2148, -9744, -64572, 1454220, -8208828, -96161472, 2479373064, -15862726152, -295638678072, 8425875692160, -56585105164080, -1653901130160720, 50485379331780720, -336548011774484160, -14999134695936065280, 482781746150042834880, -2963015696186375016960
OFFSET
0,5
FORMULA
a(n) = sum(k=0..(n-1)/2, binomial(2*k,k)*2^(-2*k)*(-1)^(k)*(2*k+1)!*stirling1(n,2*k+1)), n>0.
MATHEMATICA
Table[Sum[Binomial[2 k, k] 2^(-2 k) (-1)^k * (2 k + 1)! * StirlingS1[n, 2 k + 1], {k, 0, (n - 1)/2}], {n, 0, 23}] (* Michael De Vlieger, Jul 13 2015 *)
PROG
(Maxima)
a(n):=sum(binomial(2*k, k)*2^(-2*k)*(-1)^(k)*(2*k+1)!*stirling1(n, 2*k+1), k, 0, (n-1)/2);
(PARI) x='x+O('x^33); concat([0], Vec(serlaplace(sin(atan(log(1+x)))))) \\ Joerg Arndt, Jul 13 2015
CROSSREFS
Sequence in context: A055551 A355386 A073403 * A270840 A064518 A238923
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 17 2011
EXTENSIONS
Terms corrected by Anders Claesson, Jul 13 2015
STATUS
approved