OFFSET
0,5
COMMENTS
FORMULA
G.f.: G(t,z)=(1-z^2)/((1-z*c)*(1-z^2*c+z^4*c-t*z^2)), where c=(1-sqrt(1-4*z^2))/(2*z^2).
EXAMPLE
T(6,2)=3 because we have (UD)(UD)UU, (UD)(UUDD), and (UUDD)(UD) (the base pyramids are shown between parentheses).
Triangle starts:
1;
1;
1,1;
2,1;
3,2,1;
6,3,1;
11,5,3,1;
21,9,4,1;
MAPLE
c := ((1-sqrt(1-4*z^2))*1/2)/z^2: G := (1-z^2)/((1-z*c)*(1-z^2*c+z^4*c-t*z^2)): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 18 2011
STATUS
approved