Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Dec 06 2024 11:38:45
%S 0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,
%T 1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,
%U 1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1
%N a(n) = floor(2*n*Pi) - 2*floor(n*Pi).
%C Equivalently, the nearest integer to the fractional part of n*Pi. - _Rick L. Shepherd_, Aug 24 2020
%C Up to n = 53 (respectively n = 16551), the sequence appears to be 7-periodic (a(n) = a(n-7); 000 1111 repeated), respectively 113-periodic. This is a consequence of the fact that 7*Pi and 113*Pi are close to an integer: Pi ~ 355/113 ~ 22/7. - _M. F. Hasler_, Nov 30 2024
%H Rick L. Shepherd, <a href="/A191153/b191153.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A038130(n) - 2*A022844(n). - _Michel Marcus_, Aug 24 2020
%p A191153:=n->floor(2*n*Pi) - 2*floor(n*Pi): seq(A191153(n), n=1..100); # _Wesley Ivan Hurt_, Jul 03 2014
%t f[n_] := Floor[2 n*Pi] - 2*Floor[n*Pi];
%t t = Table[f[n], {n, 1, 220}] (* A191153 *)
%t Flatten[Position[t, 0]] (* A191159 *)
%t Flatten[Position[t, 1]] (* A191164 *)
%o (PARI) a(n) = round(frac(n*Pi)) \\ _Rick L. Shepherd_, Aug 24 2020
%Y Cf. A038130, A022844, A191159, A191164.
%K nonn,easy,changed
%O 1
%A _Clark Kimberling_, May 27 2011