login
Quadruplicated tetrahedral numbers A000292.
8

%I #21 Aug 01 2023 17:52:58

%S 1,1,1,1,4,4,4,4,10,10,10,10,20,20,20,20,35,35,35,35,56,56,56,56,84,

%T 84,84,84,120,120,120,120,165,165,165,165,220,220,220,220,286,286,286,

%U 286,364,364,364,364,455,455,455,455

%N Quadruplicated tetrahedral numbers A000292.

%C The Gi1 triangle sums, for the definitions of these and other triangle sums see A180662, of the triangle A159797 are linear sums of shifted versions of the quadruplicated tetrahedral numbers A000292, i.e., Gi1(n) = a(n-1) + a(n-2) + a(n-3) + 2*a(n-4) + a(n-8).

%C The Gi1 and Gi2 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above.

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,3,-3,0,0,-3,3,0,0,1,-1).

%F a(n) = binomial(floor(n/4)+3,3).

%F a(n-3) + a(n-2) + a(n-1) + a(n) = A144678(n).

%F a(n) = +a(n-1) +3*a(n-4) -3*a(n-5) -3*a(n-8) +3*a(n-9) +a(n-12) -a(n-13).

%F G.f.: 1 / ( (1+x)^3*(1+x^2)^3*(x-1)^4 ).

%F Sum_{n>=0} 1/a(n) = 6. - _Amiram Eldar_, Aug 18 2022

%p A190718:= proc(n) binomial(floor(n/4)+3,3) end:

%p seq(A190718(n),n=0..52);

%t LinearRecurrence[{1,0,0,3,-3,0,0,-3,3,0,0,1,-1},{1,1,1,1,4,4,4,4,10,10,10,10,20},60] (* _Harvey P. Dale_, Oct 20 2012 *)

%Y Cf. A000292 (tetrahedral numbers), A058187 (duplicated), A190717 (triplicated).

%K nonn,easy

%O 0,5

%A _Johannes W. Meijer_, May 18 2011