login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of cycles in the digraph representation of all endofunctions on {1,2,...,n}.
8

%I #55 Apr 25 2024 14:06:10

%S 0,1,5,38,390,5049,78960,1447886,30461872,723267369,19130274880,

%T 557794986814,17775137850624,614607897664305,22917282895782912,

%U 916671255921364950,39152092883971954688,1778431981539189344177,85607684151779322519552,4353142694568849287025142,233169669255877689516032000

%N The number of cycles in the digraph representation of all endofunctions on {1,2,...,n}.

%C Equivalently, since each component contains exactly one cycle, a(n) is the number of connected components in all endofuntions on {1,2,...,n}. An endofunction on {1,2,...,n} is a function from {1,2,...,n} into {1,2,...,n}. Here we are counting self loops as a cycle.

%C The total number of j-cycles over all functions on {1,2,...,n} is (j-1)!*binomial(n,j)*n^(n-j). - _Geoffrey Critzer_, Dec 26 2012

%C a(n) was "not easy to estimate" in 1953 according to the Metropolis-Ulam reference. - _David Callan_, Jun 15 2018

%H Alois P. Heinz, <a href="/A190314/b190314.txt">Table of n, a(n) for n = 0..150</a>

%H N. Metropolis and S. Ulam, <a href="http://www.jstor.org/stable/2307436">A Property of Randomness of an Arithmetical Function</a>, American Mathematical Monthly, Vol. 60, No. 4 (Apr., 1953), pp. 252-253.

%F E.g.f.: Log[1/(1-T(x))]/(1-T(x)) where T(x) is the e.g.f. for A000169. - _Geoffrey Critzer_, Mar 22 2012

%F a(n) = Sum_{k=1..n} (k-1)!*C(n,k)*n^(n-k). - _Geoffrey Critzer_, Dec 26 2012

%F a(n) ~ n^n*(log(2*n) + gamma)/2, where gamma is the Euler-Mascheroni constant (A001620). - _Vaclav Kotesovec_, Oct 08 2013

%F a(n) = Sum_{k=1..n} A066324(n,k)*H(k) where H(k) is the k-th harmonic number. - _Geoffrey Critzer_, Nov 02 2014

%F a(n) = n! * [x^n] -exp(n*x)*log(1 - x). - _Ilya Gutkovskiy_, Jan 18 2018

%F a(n) = Sum_{k=1..n} k * A060281(n,k). - _Alois P. Heinz_, Dec 15 2021

%F Conjectures from _Velin Yanev_, Apr 14 2024: (Start)

%F a(n) = (n^n)*Integral_{t=0..oo} ((t + 1)^n - 1)/(t*e^(n*t)) dt for n > 0.

%F a(n) = (e^n)*Gamma(n) + (n^n)*(n*hypergeom([1, 1], [2, n + 2], n)/(n + 1) - ((-1)^n)*Gamma(n)*Gamma(1 - n, -n) + log(n) - polygamma(n) - 1/n + i*Pi) for n > 0, where polygamma is the digamma function and the bivariate gamma function is the upper incomplete gamma function. (End)

%e a(2) = 5 because there are four functions from {1,2} into {1,2} but only one of these is not connected: 1->1,2->2 so there is a total of 5 components in all. - _Geoffrey Critzer_, Mar 22 2012

%p a:= n-> add((k-1)!*binomial(n, k)*n^(n-k), k=1..n):

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Dec 26 2012

%t f[list_] := Total[Table[i * list[[i]], {i,1,Length[list]}]]; t=Sum[n^(n-1)x^n/n!, {n,1,20}]; Map[f,Transpose[Table[Drop[Range[0,20]! CoefficientList[Series[Log[1/(1-t)]^k/k!, {x,0,20}], x], 1], {k,0,20}]]]

%t nmax = 20; CoefficientList[Series[-Log[1 + LambertW[-x]]/(1 + LambertW[-x]), {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Jun 09 2019 *)

%Y Cf. A060281.

%K nonn

%O 0,3

%A _Geoffrey Critzer_, May 08 2011