Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Dec 04 2024 09:47:26
%S 1,3,4,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,
%T 4423,9689,9941,11213,19937,21701,23209,44497,86243,110503,132049,
%U 216091,756839
%N Integers m such that m divides (2^m-2)^2 and (m-2)^((k-1)*(1+k*(m-1)) == 1 (mod k), where k = 2^m - 1.
%C Original definition: let k=2^n-1 and m=1+(k-1)*(n-1), x=m*k and define remainders a and b via 2^(x-1) == (a+1) (mod x) and m^(x-1) == (b+1) (mod x). If a == 0 (mod k) and b == 0 (mod k), n is in the sequence.
%C Conjecture: All odd entries are also Mersenne exponents (A000043): primes n such that 2^n-1 is prime.
%C Any exceptions to the conjecture are larger than 10^5. - _Charles R Greathouse IV_, Oct 03 2022
%e For n=3, k=2^3-1=7, m=1+6*2=13, x=m*k=13*7=91, 2^(x-1)==(a+1) (mod x) with 2^90 == (63+1)(mod 91), fixes a=63. m^(x-1) == (b+1) (mod x) with 13^90 == (77+1) (mod 91) fixes b=77. The two conditions are satisfied: 63 == 0 (mod 7) and 77 == 0 (mod 7). Therefore n=3 is in the sequence.
%p isA190213 := proc(n) local k,m,x,a,b ; k := 2^n-1 ; m := (k-1)*(n-1)+1 ; x := k*m ; a := modp( 2 &^ (x-1),x) -1 ; b := modp( m &^ (x-1),x) -1 ; return ( modp(a,k) = 0 and modp(b,k)=0 ) ; end proc:
%p for n from 2 do if isA190213(n) then printf("%d,\n",n); end if; end do; # avoids n=1 and undefined 0^0, _R. J. Mathar_, Jun 11 2011
%t okQ[n_] := Module[{k, m, x, a, b}, k = 2^n - 1; m = 1 + (k - 1)(n - 1); x = m k; a = PowerMod[2, x - 1, x] - 1; b = PowerMod[m, x - 1, x] - 1; Mod[a, k] == 0 && Mod[b, k] == 0];
%t Reap[For[n = 1, n < 10^4, n++, If[okQ[n], Print[n]; Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Oct 30 2019 *)
%o (PARI) is(n)=my(k=2^n-1,m=(k-1)*(n-1)+1,e=m*k-1); Mod(2,k)^e==1 && Mod(m,k)^e==1 \\ _Charles R Greathouse IV_, Sep 16 2022
%Y A174265 is a subsequence.
%Y Cf. A144671, A000043.
%K nonn,more,changed
%O 1,2
%A _Alzhekeyev Ascar M_, May 19 2011
%E a(20)-a(23) from _Jean-François Alcover_, Oct 30 2019
%E a(24)-a(28) from _Charles R Greathouse IV_, Sep 16 2022
%E a(29) from _Charles R Greathouse IV_, Sep 29 2022
%E a(30)-a(33) from _Bill McEachen_, Jul 30 2024
%E Definition simplified by _Max Alekseyev_, Dec 04 2024