login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bott periodicity: the homotopy groups of the stable orthogonal group are periodic with period 8 and repeat like [2, 2, 1, 0, 1, 1, 1, 0].
1

%I #23 Nov 03 2019 01:46:27

%S 2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,

%T 1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,

%U 1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0,2,2,1,0,1,1,1,0

%N Bott periodicity: the homotopy groups of the stable orthogonal group are periodic with period 8 and repeat like [2, 2, 1, 0, 1, 1, 1, 0].

%C Bott proved that the n-th homotopy group of the stable orthogonal group is Z/(a(n)*Z), where Z is the integers and Z/(0*Z), Z/(1*Z), Z/(2*Z) are the cyclic groups of order infinity, 1, 2, respectively. For details, see the Wikipedia orthogonal group link.

%C For references and additional links, see the Wikipedia Bott periodicity link.

%H Colin Barker, <a href="/A189996/b189996.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BottPeriodicityTheorem.html">Bott Periodicity Theorem</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Bott_periodicity">Bott periodicity</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Orthogonal_group#Homotopy_groups">Orthogonal group</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,1).

%F a(n) = 2, 2, 1, 0, 1, 1, 1, 0 if n == 0, 1, 2, 3, 4, 5, 6, 7 (mod 8), respectively.

%F From _Colin Barker_, Nov 02 2019: (Start)

%F G.f.: (2 + 2*x + x^2 + x^4 + x^5 + x^6) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)).

%F a(n) = a(n-8) for n>7.

%F (End)

%t LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{2, 2, 1, 0, 1, 1, 1, 0},104] (* _Ray Chandler_, Aug 25 2015 *)

%t PadRight[{},120,{2,2,1,0,1,1,1,0}] (* _Harvey P. Dale_, Jun 13 2017 *)

%o (PARI) a(n)=[2, 2, 1, 0, 1, 1, 1, 0][n%8+1] \\ _Charles R Greathouse IV_, Jul 13 2016

%o (PARI) Vec((2 + 2*x + x^2 + x^4 + x^5 + x^6) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)) + O(x^90)) \\ _Colin Barker_, Nov 02 2019

%Y Cf. A048648.

%K nonn,easy

%O 0,1

%A _Jonathan Sondow_, Jun 17 2011