login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189887
Dimension of homogeneous component of degree n in x in the Malcev-Poisson superalgebra S^tilde(M).
1
1, 1, 2, 3, 4, 6, 9, 11, 12, 14, 17, 19, 20, 22, 25, 27, 28, 30, 33, 35, 36, 38, 41, 43, 44, 46, 49, 51, 52, 54, 57, 59, 60, 62, 65, 67, 68, 70, 73, 75, 76, 78, 81, 83, 84, 86, 89, 91, 92, 94, 97, 99, 100, 102, 105, 107, 108, 110, 113, 115, 116, 118, 121, 123, 124, 126, 129, 131, 132, 134, 137, 139, 140, 142, 145, 147, 148, 150, 153, 155
OFFSET
1,3
LINKS
FORMULA
See Maple code.
a(n) = (1/4+i/4)*((-11+11*i)-i*(-i)^n+i^n)+2*n for n>3, where i=sqrt(-1). a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>7. G.f.: x*(x^6+x^5+x^4-x^3+2*x^2-x+1) / ((x-1)^2*(x^2+1)). - Colin Barker, Jul 24 2013
MAPLE
f:=proc(n) local k, r;
if n <= 2 then 1 elif n=3 then 2
else k:=floor(n/4); r:=n-4*k;
if r=0 then 8*k-5 elif r=1 then 8*k-4 elif r=2 then 8*k-2 else 8*k+1; fi;
fi;
end;
MATHEMATICA
LinearRecurrence[{2, -2, 2, -1}, {1, 1, 2, 3, 4, 6, 9}, 100] (* Paolo Xausa, Jun 26 2024 *)
CROSSREFS
Apart from initial terms, same as A047415.
Sequence in context: A215818 A132600 A163627 * A179970 A372689 A018431
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 29 2011
STATUS
approved