OFFSET
1,1
COMMENTS
The number pq+pr+qr is prime only if p, q, and r are distinct. The primes of form pq+pr+qr are in A087054. A prime may have multiple representations as pq+pr+qr; for example, 2*3*13 and 3*5*7 both produce the prime 71.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
Victor Ufnarovski and Bo Ahlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003.
MATHEMATICA
pqr[nn_] := Module[{p=Prime[Range[PrimePi[nn/6]+1]], i, j, k, n, prod}, Sort[Reap[i=0; While[i++; p[[i]]p[[i+1]]p[[i+2]] <= nn, j=i; While[j++; p[[i]]p[[j]]p[[j+1]] <= nn, k=j; While[k++; prod=p[[i]]p[[j]]p[[k]]; prod <= nn, n=p[[i]]p[[j]]+p[[i]]p[[k]]+p[[j]]p[[k]]; If[PrimeQ[n], Sow[prod]]]]]][[2, 1]]]]; pqr[1000]
Take[Union[Times@@@Select[Subsets[Prime[Range[30]], {3}], PrimeQ[ Total[ Times@@@Subsets[#, {2}]]]&]], 60](* Harvey P. Dale, Dec 29 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 27 2011
STATUS
approved