login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189528
a(n) = n + [n*r/s] + [n*t/s]; r=1, s=sqrt(3)-sqrt(2), t=sqrt(3)+sqrt(2).
3
13, 27, 41, 55, 69, 83, 98, 112, 126, 139, 153, 167, 181, 196, 210, 224, 238, 252, 266, 279, 294, 308, 322, 336, 350, 364, 378, 393, 407, 420, 434, 448, 462, 476, 491, 505, 519, 533, 547, 560, 574, 589, 603, 617, 631, 645, 659, 674, 688, 701, 715, 729, 743, 757, 772, 786, 800, 814, 828, 841, 855, 870, 884, 898, 912
OFFSET
1,1
COMMENTS
See A189527.
LINKS
MATHEMATICA
r=1; s=3^(1/2)-2^(1/2); t=3^(1/2)+2^(1/2);
f[n_] := n + Floor[n*s/r] + Floor[n*t/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[f[n], {n, 1, 120}] (* A189527 *)
Table[g[n], {n, 1, 120}] (* A189528 *)
Table[h[n], {n, 1, 120}] (* A189529 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/(sqrt(3) - sqrt(2))) + floor(n*(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))), ", ")) \\ G. C. Greubel, Apr 20 2018
(Magma) [n + Floor(n/(Sqrt(3)-Sqrt(2))) + Floor(n*(Sqrt(3) +Sqrt(2))/( Sqrt(3) -Sqrt(2))): n in [1..100]]; // G. C. Greubel, Apr 20 2018
CROSSREFS
Sequence in context: A041328 A136773 A358053 * A132755 A250667 A147450
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 23 2011
STATUS
approved