OFFSET
0,4
FORMULA
T(n,k)=[x^n] (1+x/sqrt(1-4*x))*((1-sqrt(1-4*x))/2)^k.
T(n,k) = binomial(2*n-k,n-k)*(n^2+n*k-k^2-k)/((2*n-k)*(2*n-k-1)) for k<=n, (n,k) <> (0,0), (1,1).
Recurrence: T(n+1,k+1) = T(n,k) + T(n,k+1) + ... + T(n,n).
EXAMPLE
Triangle begins:
1
1,1
2,2,1
6,5,3,1
20,15,9,4,1
70,49,29,14,5,1
252,168,98,49,20,6,1
924,594,342,174,76,27,7,1
3432,2145,1221,627,285,111,35,8,1
MATHEMATICA
T[n_, k_]=If[n==k, 1, Binomial[2n-k, n-k](n^2+n k-k^2-k)/((2n-k)(2n-k-1))]
Flatten[Table[T[n, k], {n, 0, 20}, {k, 0, n}]]
PROG
(Maxima) T(n, k):=if n=k then 1 else binomial(2*n-k, n-k)*(n^2+n*k-k^2-k)/((2*n-k)*(2*n-k-1));
create_list(T(n, k), n, 0, 20, k, 0, n);
CROSSREFS
KEYWORD
AUTHOR
Emanuele Munarini, Apr 18 2011
STATUS
approved