login
A188288
In lunar arithmetic in base 2, the number of divisors of the number 11...1101 (n digits, the binary expansion of 2^n-3).
2
0, 1, 0, 2, 2, 2, 4, 6, 10, 16, 31, 55, 100, 185, 345, 644, 1209, 2274, 4298, 8145, 15469, 29454, 56213, 107489, 205925, 395190, 759621, 1462282, 2818799, 5440705, 10513994, 20340794, 39393580, 76368240, 148185145, 287791544, 559386196, 1088144064, 2118283567, 4126561528, 8044217224
OFFSET
0,4
COMMENTS
a(1)=1 by convention. The g.f. is only a conjecture.
LINKS
D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
FORMULA
G.f.: x + x^3/(1-x) + Sum(x^l*(1-x)^2/(1-2*x+x^(l-1)-x^l+x^(l+2)), l=3..oo). - N. J. A. Sloane, Apr 19 2011
EXAMPLE
a(6) = 4 since 111101 has the divisors 1, 101, 1101, 111101.
a(8) = 10 since 11111101 has the divisors 1, 101, 1001, 1101, 10101, 11001, 11101, 111001, 111101, 11111101.
CROSSREFS
Sequence in context: A010558 A365717 A060827 * A064355 A000799 A185030
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
a(1) in b-file corrected by Andrew Howroyd, Feb 22 2018
STATUS
approved