login
A187858
Number of 3-step one space for components leftwards or up, two space for components rightwards or down asymmetric quasi-queen's tours (antidiagonal moves become knight moves) on an n X n board summed over all starting positions.
1
0, 2, 81, 254, 578, 1030, 1610, 2318, 3154, 4118, 5210, 6430, 7778, 9254, 10858, 12590, 14450, 16438, 18554, 20798, 23170, 25670, 28298, 31054, 33938, 36950, 40090, 43358, 46754, 50278, 53930, 57710, 61618, 65654, 69818, 74110, 78530, 83078, 87754, 92558
OFFSET
1,2
COMMENTS
Row 3 of A187857.
LINKS
FORMULA
Empirical: a(n) = 64*n^2 - 252*n + 238 for n>3.
Conjectures from Colin Barker, Apr 26 2018: (Start)
G.f.: x^2*(2 + 75*x + 17*x^2 + 57*x^3 - 23*x^4) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6.
(End)
EXAMPLE
Some solutions for 4 X 4:
..0..0..0..0....1..0..0..0....0..0..0..0....0..3..2..0....0..0..0..0
..2..1..0..0....0..0..0..0....0..0..0..0....0..0..1..0....0..1..0..0
..0..0..0..0....0..3..2..0....0..0..0..0....0..0..0..0....0..0..3..0
..0..0..3..0....0..0..0..0....0..3..2..1....0..0..0..0....2..0..0..0
CROSSREFS
Cf. A187857.
Sequence in context: A056972 A051391 A041799 * A371508 A352742 A072408
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 14 2011
STATUS
approved