login
A187612
Number of 8-step one space for components leftwards or up, two space for components rightwards or down asymmetric quasi-bishop's tours (antidiagonal moves become knight moves) on an n X n board summed over all starting positions.
1
0, 0, 0, 0, 0, 474, 3780, 12946, 32869, 68308, 117760, 187311, 275272, 379035, 500919, 639115, 793623, 964443, 1151575, 1355019, 1574775, 1810843, 2063223, 2331915, 2616919, 2918235, 3235863, 3569803, 3920055, 4286619, 4669495, 5068683, 5484183
OFFSET
1,6
COMMENTS
Row 8 of A187606.
LINKS
FORMULA
Empirical: a(n) = 8156*n^2 - 114640*n + 385419 for n>13.
Conjectures from Colin Barker, Apr 25 2018: (Start)
G.f.: x^6*(474 + 2358*x + 3028*x^2 + 4897*x^3 + 4759*x^4 - 1503*x^5 + 6086*x^6 - 1689*x^7 - 2608*x^8 + 2319*x^9 - 1809*x^10) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>16.
(End)
CROSSREFS
Cf. A187606.
Sequence in context: A348806 A370295 A045302 * A237679 A236776 A236636
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 11 2011
STATUS
approved