OFFSET
0,7
COMMENTS
(Start) See A187498 for supporting theory. Define the matrix
U_1=
(0 1 0 0)
(1 0 1 0)
(0 1 0 1)
(0 0 1 1).
Let r>=0, and let B_r be the r-th "block" defined by B_r={a(3*r-3),a(3*r),a(3*r+1),a(3*r+2)} with a(-3)=0. Note that B_r-B_(r-1)-3*B_(r-2)+2*B_(r-3)+B_(r-4)={0,0,0,0}, for r>=4, with initial conditions {B_k}={{0,1,0,0},{1,0,1,0},{0,2,0,1},{2,0,3,1}}, k=0,1,2,3. Let p={p_1,p_2,p_3,p_4}={-3,0,1,2}, n=3*r+p_i and M=(m_(i,j))=(U_1)^r, i,j=1,2,3,4. Then B_r corresponds component-wise to the second column of M, and a(n)=a(3*r+p_i)=m_(i,2) gives the quantity of H_(9,2,0) tiles that should appear in a subdivided H_(9,i,r) tile. (End)
Since a(3*r)=a(3*(r+1)-3) for all r, this sequence arises by concatenation of second-column entries m_(2,2), m_(3,2) and m_(4,2) from successive matrices M=(U_1)^r.
REFERENCES
L. E. Jeffery, Unit-primitive matrices and rhombus substitution tilings, (in preparation).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,0,3,0,0,-2,0,0,-1).
FORMULA
Recurrence: a(n) = a(n-3) +3*a(n-6) -2*a(n-9) -a(n-12), for n>=12, with initial conditions {a(m)}={1,0,0,0,1,0,2,0,1,0,3,1}, m=0,1,...,11.
G.f.: (1-x^3+x^4-x^6-x^7+x^8)/(1-x^3-3*x^6+2*x^9+x^12).
MATHEMATICA
LinearRecurrence[{0, 0, 1, 0, 0, 3, 0, 0, -2, 0, 0, -1}, {1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 1}, 50] (* G. C. Greubel, Apr 20 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x^3+x^4-x^6-x^7+x^8)/(1-x^3-3*x^6 +2*x^9 +x^12)) \\ G. C. Greubel, Apr 20 2018
(Magma) I:=[1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 1]; [n le 12 select I[n] else Self(n-3) + 3*Self(n-6) - 2*Self(n-9) - Self(n-12): n in [1..50]]; // G. C. Greubel, Apr 20 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
L. Edson Jeffery, Mar 17 2011
STATUS
approved