%I #7 Mar 30 2012 18:35:54
%S 17,19,23,29,34,38,46,47,49,51,53,57,58,59,61,68,69,71,76,83,85,87,89,
%T 92,94,95,97,98,102,103,107,109,113,114,115,116,118,119,121,122,127,
%U 129,131,133,136,138,139,141,142,145,147,149,151,152,153,157,161,163,166,167,169,170,171,173,174,177,178,179,181,183,184,188
%N Numbers k such that the decimal digits of 1/k contain every digit at least once.
%e 17 is in the sequence because 1/17 = .0588235294117647 0588235294117647 ...
%e contains every digit at least once ;
%e 31 is not in the sequence because 1/31 = .032258064516129 032258064516129...
%e without the digit 7.
%p with(numtheory):Digits:=200:B:={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: T:=array(1..250)
%p : for p from 1 to 200 do:ind:=0:n:=floor(evalf(10^200/p)):l:=length(n):n0:=n:s:=0:for
%p m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v : T[m]:=u:od: A:=convert(T,
%p set):z:=nops(A):if A intersect B = B and ind=0 then ind:=1: printf(`%d, `, p):else
%p fi:od:
%t A2 := {}; Do[ If[Length[Union[IntegerDigits[Floor[10^200/n]]]] == 10, A2 =
%t Join[A2, {n}]], {n, 1, 200}]; Print[A2]
%Y Cf. A187614.
%K nonn,base
%O 1,1
%A _Michel Lagneau_, Mar 09 2011