login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187239
Number of ways to place 7 nonattacking bishops on an n X n board.
7
0, 0, 0, 0, 440, 38368, 1022320, 14082528, 126490352, 837543200, 4412818240, 19447224864, 74255991784, 251997948736, 774861621936, 2191005028672, 5764306674400, 14243327787456, 33309659739904, 74194554880960, 158241369977880, 324605935279648, 642894402918768
OFFSET
1,5
LINKS
Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
E. Weisstein, Bishops Problem, mathWorld.
Index entries for linear recurrences with constant coefficients, signature (6, -6, -34, 84, 42, -322, 162, 603, -708, -540, 1260, 0, -1260, 540, 708, -603, -162, 322, -42, -84, 34, 6, -6, 1).
FORMULA
a(n) = n^14/5040 - n^13/180 + 313n^12/4320 - 383n^11/648 + 14797n^10/4320 - 38233n^9/2520 + 3217n^8/60 - 145469n^7/945 + 1546679n^6/4320 - 4297801n^5/6480 + 257903n^4/270 - 3915679n^3/3780 + 1787007n^2/2240 - 318023n/840 + 9503/128 + (-n^8/192 + n^7/8 - 389n^6/288 + 689n^5/80 - 319n^4/9 + 1153n^3/12 - 95965n^2/576 + 20129n/120 - 9503/128)*(-1)^n.
G.f.: -8x^5*(630x^18 + 10620x^17 + 153525x^16 + 1211058x^15 + 6621390x^14 + 24647178x^13 + 66958554x^12 + 133891418x^11 + 202680754x^10 + 232634698x^9 + 204008900x^8 + 135332502x^7 + 67245306x^6 + 24326718x^5 + 6174582x^4 + 1024222x^3 + 99344x^2 + 4466x + 55)/((x-1)^15*(x+1)^9).
a(7) = A002465(7).
MATHEMATICA
CoefficientList[Series[- 8 x^4 (630 x^18 + 10620 x^17 + 153525 x^16 + 1211058 x^15 + 6621390 x^14 + 24647178 x^13 + 66958554 x^12 + 133891418 x^11 + 202680754 x^10 + 232634698 x^9 + 204008900 x^8 + 135332502 x^7 + 67245306 x^6 + 24326718 x^5 + 6174582 x^4 + 1024222 x^3 + 99344 x^2 + 4466 x + 55) / ((x - 1)^15 (x + 1)^9), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Mar 07 2011
STATUS
approved