login
A187129
Consider all pairs of primes (p,q) with p+q = 2n, p <= q; a(n) is the sum of all the q's.
10
2, 3, 5, 12, 7, 18, 24, 24, 30, 47, 49, 55, 40, 59, 48, 100, 102, 50, 89, 120, 109, 136, 181, 158, 117, 199, 133, 170, 252, 133, 261, 300, 98, 267, 324, 279, 303, 419, 244, 303, 494, 345, 260, 593, 302, 343, 503, 207, 452, 612, 399, 488, 668, 526, 619, 872, 574, 540, 1082, 352, 475, 920, 273, 691, 865, 598, 523, 822, 725, 864, 1211
OFFSET
2,1
LINKS
FORMULA
a(n) = Sum_{i=1..n} (2*n-i) * c(i) * c(2*n-i), where c = A010051. - Wesley Ivan Hurt, Apr 29 2021
a(n) = sopf(A362640(n)), n>=2. - Wesley Ivan Hurt, Apr 28 2023
EXAMPLE
2*5 = 10 can be expressed as the sum of two primes in two ways: 3+7 and 5+5, so a(5) = 7+5 = 12.
MAPLE
with(numtheory); a:=n-> sum( (2*n-i)*( ((pi(i) - pi(i-1)) * (pi(2*n-i) - pi(2*n-i-1))) ), i = 1..n ); seq(a(k), k=1..100); # Wesley Ivan Hurt, Jan 20 2013
MATHEMATICA
Table[Total[Select[IntegerPartitions[2*n, {2}], AllTrue[#, PrimeQ]&][[All, 1]]], {n, 2, 100}] (* Harvey P. Dale, Aug 09 2020 *)
PROG
(PARI) a(n) = my(s=0); forprime(p=1, n, if (isprime(2*n-p), s += 2*n-p)); s; \\ Michel Marcus, Apr 29 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 11 2011
STATUS
approved