login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186575
Expansion of (1 + 2*x + 6*x^2)/(1 - x - x^2 - 2*x^3) in powers of x.
3
1, 3, 10, 15, 31, 66, 127, 255, 514, 1023, 2047, 4098, 8191, 16383, 32770, 65535, 131071, 262146, 524287, 1048575, 2097154, 4194303, 8388607, 16777218, 33554431, 67108863, 134217730, 268435455, 536870911, 1073741826, 2147483647, 4294967295
OFFSET
0,2
COMMENTS
From Kai Wang, May 23 2020: (Start)
Let f(t) = t^3 + u*t^2 + v*t + w and {x,y,z} be the simple roots of f(t).
For n>=0, let p(n) = x^n/((x-y)(x-z)) + y^n/((y-x)(y-z)) + z^n/((z-x)(z-y)) and q(n) = x^n + y^n + z^n.
Then for n >= 0, q(n) = 3*p(n+2) +2*u*p(n+1) + v*p(n).
In this case, f(t) = t^3 - t^2 - t - 2. q(n) = 3*p(n+2} - 2*p(n+1) - p(n).
p(n) = {0, 0, 1, 1, 2, 5, 9,...}, q(n) = {3, 1, 3, 10, 15, 31,...}.
a(n) = q(n+1), A077939(n) = p(n+2). (End)
LINKS
Gamaliel Cerda-Morales, A note on Modified Third-order Jacobsthal numbers, arXiv:1905.00725 [math.CO], 2019. See pp. 3-4.
Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
Evren Eyican Polatlı and Yüksel Soykan, On generalized third-order Jacobsthal numbers, Asian Res. J. of Math. (2021) Vol. 17, No. 2, 1-19, Article No. ARJOM.66022.
FORMULA
a(n+1) = n*Sum_{k=1..n} Sum_{j=n-3*k..k} 2^(k-j)*binomial(j,n-3*k+2*j)*binomial(k,j)/k.
G.f.: [log(1/(1 - x - x^2 - 2*x^3))]', (x + x^2 + 2*x^3)^k = Sum_{n>=k} Sum_{j=n-3*k..k} 2^(k-j)*binomial(j,n-3*k+2*j)*binomial(k,j)*x^n (see link).
a(n) = 2^(n+1) + A099837(n+1). - R. J. Mathar, Mar 18 2011
a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n>2. - Colin Barker, May 03 2019
From Kai Wang, May 23 2020: (Start)
a(n) = 3*A077947(n+1) - 2*A077947(n) - A077947(n-1).
A077947(n) = (-8*a(n+3) + 27*a(n+2) - a(n+1))/147. (End)
EXAMPLE
G.f. = 1 + 3*x + 10*x^2 + 15*x^3 + 31*x^4 + 66*x^5 + 127*x^6 + 255*x^7 + ...
MATHEMATICA
CoefficientList[Series[(1+2x+6x^2)/(1-x-x^2-2x^3), {x, 0, 40}], x] (* Harvey P. Dale, Mar 14 2011 *)
PROG
(PARI) Vec((1 + 2*x + 6*x^2) / ((1 - 2*x)*(1 + x + x^2)) + O(x^40)) \\ Colin Barker, May 03 2019
(PARI) polsym(polrecip(1 - x - x^2 - 2*x^3), 44)[^1] \\ Joerg Arndt, Jun 23 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 35); Coefficients(R!( (1 + 2*x + 6*x^2)/(1 - x - x^2 - 2*x^3))); // Marius A. Burtea, Jan 31 2020
CROSSREFS
Cf. A099837.
Sequence in context: A030005 A192163 A129307 * A356318 A233312 A330940
KEYWORD
nonn,easy
AUTHOR
Vladimir Kruchinin, Feb 23 2011
EXTENSIONS
More terms from Harvey P. Dale, Mar 14 2011
STATUS
approved