OFFSET
1,1
COMMENTS
Table starts
..........520017..........10084236............143369699............1662436696
........10084236.........311128593...........6520730198..........105970767207
.......143369699........6520730198.........188034884094.........4041778238254
......1662436696......105970767207........4041778238254.......111203560772547
.....16382439469.....1414199542732.......69471558136868......2391923493659465
....140871930232....16059530994398......995828085723859.....42174821764604242
...1078197169699...159099595031390....12251749347425002....629512200937395977
...7459396065112..1400823449171621...132151619698400257...8143852416376007571
..47221234070168.11121210203531892..1270399513311212137..92981285763140685886
.276218909139304.80539662788823416.11027904404610778911.950506396177707075676
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..178
R. H. Hardin, Polynomials for columns 1-5
FORMULA
Empirical: T(n,k) is a polynomial of degree 5k+50 in n, for fixed k.
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.
EXAMPLE
Some solutions for 5X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..3....0..0..0..0....0..0..0..0....0..0..0..3....0..0..0..0
..0..0..0..5....0..0..1..2....0..1..1..4....0..1..5..1....0..0..2..3
..0..1..1..0....1..2..0..2....3..1..4..1....5..4..4..5....0..2..5..1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, General degree formula intuited by D. S. McNeil in the Sequence Fans Mailing List, Feb 13 2011
STATUS
approved