login
A186031
Number of Dyck paths of semilength n with a valley (DU) spanning the midpoint.
1
0, 1, 1, 5, 10, 42, 107, 429, 1234, 4862, 15032, 58786, 190588, 742900, 2490399, 9694845, 33312770, 129644790, 453999656, 1767263190, 6282014804, 24466267020, 88026769844, 343059613650, 1246635155180, 4861946401452, 17815452662152
OFFSET
1,4
LINKS
FORMULA
a(n:even) = A000108(n-1); a(n:odd) = A000108(n-1) - A000108((n-1)/2)^2.
EXAMPLE
For n=4 the 5 paths are UDUD.UDUD, UUDD.UDUD, UDUD.UUDD, UUDD.UUDD and UUUD.UDDD where dot marks the midpoint.
MAPLE
C:= n-> binomial (2*n, n)/(n+1):
a:= n-> C(n-1) -`if` (irem(n, 2)=1, C((n-1)/2)^2, 0):
seq (a(n), n=1..40);
CROSSREFS
Dyck n-paths with peak at midpoint is given by A000108(n-1); For UU (or DD) at midpoint see A027302.
Sequence in context: A270077 A271150 A271202 * A305246 A316546 A187877
KEYWORD
nonn
AUTHOR
David Scambler, Feb 11 2011
STATUS
approved