%I #18 Mar 18 2020 09:00:19
%S 1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,9,6,267,3727,483012,69823723,
%T 14836130862
%N Not necessarily connected 6-regular simple graphs on n vertices with girth at least 4.
%C First differs from A058276 at n=24.
%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_girth_ge_4">Not necessarily connected k-regular graphs with girth at least 4</a>
%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_k-reg_girth_ge_g_index">Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g</a>
%F This sequence is the Euler transformation of A058276.
%F a(n) = A058276(n) + A185264(n).
%t A058276 = Cases[Import["https://oeis.org/A058276/b058276.txt", "Table"], {_, _}][[All, 2]];
%t (* EulerTransform is defined in A005195 *)
%t EulerTransform[Rest @ A058276] (* _Jean-François Alcover_, Dec 04 2019, updated Mar 18 2020 *)
%Y 6-regular simple graphs with girth at least 4: A058276 (connected), A185264 (disconnected), this sequence (not necessarily connected).
%Y Not necessarily connected k-regular simple graphs with girth at least 4: A185314 (any k), A185304 (triangle); specified degree k: A008484 (k=2), A185334 (k=3), A185344 (k=4), A185354 (k=5), this sequence (k=6).
%K nonn,more,hard
%O 0,17
%A _Jason Kimberley_, Dec 07 2011