login
Number of disconnected 4-regular simple graphs on n vertices with girth exactly 3.
8

%I #20 Mar 17 2020 12:12:51

%S 0,0,0,0,0,0,0,0,0,0,1,1,3,8,25,88,377,2026,13349,104593,930571,

%T 9124627,96699740,1095467916,13175254799,167460501260,2241576473025,

%U 31510509517563,464047467911837,7143984462730072,114749034352969037,1919656978492976231

%N Number of disconnected 4-regular simple graphs on n vertices with girth exactly 3.

%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/D_k-reg_girth_eq_g_index">Index of sequences counting disconnected k-regular simple graphs with girth exactly g</a>

%F a(n) = A033483(n) - A185244(n).

%Y 4-regular simple graphs with girth exactly 3: A184943 (connected), this sequence (disconnected), A185143 (not necessarily connected).

%Y Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), A210703 (triangle); for fixed k: A185033 (k=3), this sequence (k=4), A185053 (k=5), A185063 (k=6).

%Y Disconnected 4-regular simple graphs with girth exactly g: this sequence (g=3), A185044 (g=4).

%K nonn,hard

%O 0,13

%A _Jason Kimberley_, Feb 29 2012

%E Terms a(27)-a(31), due to the extension of A006820 by _Andrew Howroyd_, from _Jason Kimberley_, Mar 16 2020