OFFSET
0,3
COMMENTS
It appears that as n gets large, row n conforms to a Poisson distribution with mean = 1/2. In other words, as n gets large, T(n,k) approaches n^n/(2^k*k!*e^(1/2)).
FORMULA
EXAMPLE
Triangle begins:
1;
1;
3, 1;
18, 9;
163, 90, 3;
1950, 1100, 75;
28821, 16245, 1575, 15;
505876, 283122, 33810, 735;
10270569, 5699932, 780150, 26460, 105;
236644092, 130267440, 19615932, 884520, 8505;
6098971555, 3332614725, 538325550, 29619450, 467775, 945;
...
MATHEMATICA
nn=10; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0, nn]! CoefficientList[Series[Exp[t^2/2(y-1)]/(1-t), {x, 0, nn}], {x, y}]//Grid
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Dec 24 2012
STATUS
approved