login
A185025
Triangular array read by rows: T(n,k) is the number of functions f:{1,2,...,n} -> {1,2,...,n} that have exactly k 2-cycles for n >= 0 and 0 <= k <= floor(n/2).
1
1, 1, 3, 1, 18, 9, 163, 90, 3, 1950, 1100, 75, 28821, 16245, 1575, 15, 505876, 283122, 33810, 735, 10270569, 5699932, 780150, 26460, 105, 236644092, 130267440, 19615932, 884520, 8505, 6098971555, 3332614725, 538325550, 29619450, 467775, 945
OFFSET
0,3
COMMENTS
It appears that as n gets large, row n conforms to a Poisson distribution with mean = 1/2. In other words, as n gets large, T(n,k) approaches n^n/(2^k*k!*e^(1/2)).
FORMULA
E.g.f.: exp((T(x)^2/2)*(y-1))/(1 - T(x)) where T(x) is the e.g.f. for A000169.
Sum_{k=1..floor(n/2)} k * T(n,k) = A081131(n).
EXAMPLE
Triangle begins:
1;
1;
3, 1;
18, 9;
163, 90, 3;
1950, 1100, 75;
28821, 16245, 1575, 15;
505876, 283122, 33810, 735;
10270569, 5699932, 780150, 26460, 105;
236644092, 130267440, 19615932, 884520, 8505;
6098971555, 3332614725, 538325550, 29619450, 467775, 945;
...
MATHEMATICA
nn=10; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0, nn]! CoefficientList[Series[Exp[t^2/2(y-1)]/(1-t), {x, 0, nn}], {x, y}]//Grid
CROSSREFS
Column k=0 gives A089466.
Sequence in context: A071210 A051141 A068141 * A051238 A283150 A307064
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Dec 24 2012
STATUS
approved