login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184417
p^2 + (p+2)^2 - 1 where (p,p+2) is the n-th twin prime pair.
1
33, 73, 289, 649, 1801, 3529, 7201, 10369, 20809, 23329, 38089, 45001, 64801, 73729, 78409, 103969, 115201, 145801, 159049, 194689, 242209, 352801, 373249, 426889, 544969, 649801, 720001, 763849, 824329, 871201, 1312201, 1351369, 1371169, 1472329, 1555849, 2080801, 2130049, 2205001, 2255689, 2384929, 2654209
OFFSET
1,1
COMMENTS
This seems to have a disproportionately high probability of generating a prime number.
FORMULA
a(n) = A063533(n) - 1.
EXAMPLE
a(1) = prime(1)^2 + (prime(1)+2)^2 - 1 = 3^2 + (3+2)^2 - 1 = 33;
a(2) = prime(2)^2 + (prime(2)+2)^2 - 1 = 5^2 + (5+2)^2 - 1 = 73;
a(3) = prime(3)^2 + (prime(3)+2)^2 - 1 = 11^2 + (11+2)^2 - 1 = 289.
MATHEMATICA
Total/@(Select[Partition[Prime[Range[500]], 2, 1], #[[2]]-#[[1]]==2&]^2)-1 (* Harvey P. Dale, Feb 24 2011 *)
CROSSREFS
Sequence in context: A015722 A103046 A063868 * A240884 A049012 A137187
KEYWORD
nonn
AUTHOR
Robert Mohr, Feb 13 2011
STATUS
approved